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Abstract
Active learning (AL) aims to sample the most informative
data instances for labeling, which makes the model fitting
data efficient while significantly reducing the annotation cost.
However, most existing AL models make a strong assumption
that the annotated data instances are always assigned correct
labels, which may not hold true in many practical settings. In
this paper, we develop a theoretical framework to formally
analyze the impact of noisy annotations in AL and show that
systematically re-sampling guarantees to reduce the noise rate,
which can lead to improved generalization capability. More
importantly, the theoretical framework demonstrates the key
benefit of conducting active re-sampling on label-efficient
learning, which is critical for AL. The theoretical results also
suggest essential properties of an active re-sampling function
with a fast convergence speed and guaranteed error reduction.
This inspires us to design a novel spatial-temporal active re-
sampling function by leveraging the important spatial and
temporal properties of maximum-margin classifiers. Extensive
experiments conducted on both synthetic and real-world data
clearly demonstrate the effectiveness of the proposed active
re-sampling function.

Introduction
Modern supervised learning techniques, including most deep
learning models, require a large volume of labeled data for
model training. However, annotating a large number of data
samples is both labor-intensive and time-consuming. Active
Learning (AL) provides a promising means to reduce the data
annotation cost. The key idea is to train an active sampling
model to identify most informative samples and only ask
their labels from annotators. While traditional AL methods
have demonstrated great potential in reducing the data anno-
tation cost (Joshi, Porikli, and Papanikolopoulos 2009; Luo,
Schwing, and Urtasun 2013; Yoo and Kweon 2019; Kirsch,
Van Amersfoort, and Gal 2019), they are usually vulnerable
to the annotation noises introduced through various kinds of
human or device errors due to limitation of their knowledge
or the constraints from the environment. Thus, their effective-
ness may be significantly affected when being deployed in
many practical settings.
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Figure 1: (a) impact of noisy annotations, (b) comparison of
no re-sampling, random re-sampling, and active re-sampling

Figure 1 (a) demonstrates the major negative impacts of an-
notation noises to AL. It can be seen that effectiveness of AL
becomes completely diminished in the presence of a moder-
ate level of annotation noises at 0.3. We have a few important
observations. First, AL under noise, which corresponds to the
AL noise curve in the figure, significantly under-performs
an AL model trained via clean data (i.e., AL clean). In con-
trast, AL clean demonstrates a clear advantage over passively
learning (i.e., Random clean), which randomly chooses data
instances for annotation and model training. Passive learn-
ing eventually still converges to the desirable generalization
performance but requires much more annotated instances as
compared with AL. Furthermore, AL noise even performs
worse than a passive learning model when being training from
noisy annotations (i.e., Random noise). This is because an
AL model tends to choose the most informative instances for
annotation and these instances can significantly impact the de-
cision surface. When these important instances are wrongly
labeled, they could do more harm to the AL model than
randomly selected instances. Therefore, an actively trained
model could perform even worse under annotation noises.
Finally, as expected, models trained from noisy data exhibit
a much higher variance, which is undesirable.

Despite significant negative impacts as identified above,
how to effectively conduct AL from noisy annotations is still
largely unexplored. Traditional methods assume that data in-
stances, once being sampled, can be precisely labeled. How-
ever, as discussed earlier, such a strong assumption no longer
hold true for many applications. Few existing works propose
to perform re-sampling among the annotated data instances
and relabel them to alleviate the negative impact of the anno-
tation noises. As a representative work (Lin, Mausam, and
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Weld 2016), the model needs to determine whether to query
a new unlabeled instance from the unlabeled pool or ask the
annotator to relabel one from the training set. As a result,
each training instance may have a different number of labels
as re-sampling and active sampling both precede. The final
label of each instance is determined by some aggregation
function (e.g., majority vote among all its labels).

However, existing re-sampling models suffer from three
fundamental issues. First, it is hard to control the balance
between active sampling and re-sampling. The same criterion
is typically used for both purposes. However, the training
distribution and unlabelled pool distribution could be very
different, especially at the early stage of AL. Thus, the same
criterion evaluated over these two dataset are not directly
comparable. In particular, due to the over-fitting problem
caused by lack of data in AL, the same criterion may tend to
be overestimated on the training set rather than on the pool
set, which forces the model to conduct re-sampling repeatedly
and neglects active sampling. Second, for the majority vote
to work properly, the same instance needs to be re-sampled
multiple times, which may introduce unnecessary annota-
tion costs. Our theoretical results show that while majority
vote based re-sampling guarantees to reduce the noise rate,
it is far less label-efficient than a well-designed re-sampling
mechanism. Finally, the current re-sampling criteria are ex-
pensive to evaluate, which typically require retraining the
model with each data instance and all its possible labels. This
makes re-sampling difficult to scale to real-world (especially
multi-class) problems.

Besides the major issues outlined above, a theoretical
framework that can be used to analyze the behavior of dif-
ferent re-sampling criteria and quantify the performance im-
provement (e.g., using error bound) as a result of re-sampling
is still missing. In this paper, we propose a novel Spatial-
Temporal Active Re-sampling (STARS) model to support
label-efficient learning from noisy annotations. The proposed
active re-sampling function will reduce the error bound with
theoretical guarantees. Figure 1 (b) shows that random re-
sampling achieves a better performance than without any
re-sampling under annotation noises. However, it converges
much slower (also justified by our theoretical results). In
contrast, the proposed STARS model converges much faster
and to a much better performance, which is very close to an
optimal AL model trained on clean data. More importantly, it
achieves this performance by using less than 250 annotations,
which include labels collected through both active sampling
and re-sampling. The promising result shows that this work
has the potential to extend the frontiers of AL research by
filling out a critical gap in conducting active sampling from
noisy annotations. As a result, the proposed research will
allow AL models be successfully deployed in many practical
settings, where noisy annotations cannot be avoided.

Our main contribution is threefold: (i) we develop the
first formal theoretical framework to rigorously justify the
negative impact of noisy annotations and establish the value
of active re-sampling, (ii) we propose a loss based active re-
sampling function with nice theoretical guarantees to reduce
the error bound, and (iii) we identify some major limitations
of the loss based re-sampling function and develop a novel

spatial-temporal active re-sampling function by leveraging
the key spatial and temporal properties of maximum-margin
classifiers. Extensive experiments on both synthetic and real-
world data demonstrate the effectiveness of the proposed
active re-sampling model.

Related Work
AL with noisy annotations is primarily investigated under col-
laborative annotation such as crowd-sourcing (Ipeirotis 2011)
and collaborative tagging (Ramezani et al. 2009), where mul-
tiple annotators label the data simultaneously (Donmez and
Carbonell 2008). In the multi-annotator setting, annotation
noise can be reduced through quality control methods (Khat-
tak and Salleb-Aouissi 2011; Chittilappilly, Chen, and Amer-
Yahia 2016; Hung et al. 2013). However, in most common
scenarios of AL, usually one annotator is available for data
labeling or the label is collected from a single device. For
example, in the medical domain, the diagnosis of a disease
(i.e., a label) is likely to be provided by a single doctor. The
difficulty of the task also makes annotation errors inevitable.

Few existing works leverage relabeling strategies to fix the
ill-labelled training samples during AL. (Sheng, Provost, and
Ipeirotis 2008) proposes to leverage both model and label
uncertainty to identify samples for relabelling. However, it
is difficult to balance acquiring a new label and relabelling
one. (Zhao, Sukthankar, and Sukthankar 2011) proposes to
linearly combine the expected loss change and label incon-
sistency (LI). However, the LI is roughly estimated via local
density estimation, which is sensitive to the initialization of
AL. (Bouguelia et al. 2018) proposes to use two types of dis-
agreement for relabeling. However, it still requires evaluating
all the leave-one-out models thus is very expensive espe-
cially in the multi-class case. The sampling score needs to
be evaluated for each instance and each class. (Lin, Mausam,
and Weld 2016) leverages different types of uncertainty and
impact sampling. However, the impact computation is also
expensive. Furthermore, majority vote often requires many
times of relabeling. Similarly, (Du and Ling 2010) proposes
an exploration-exploitation guided AL framework with rela-
beling. However, the decision making is the same as majority
voting. (Zhang, Wang, and Yun 2015) proposes to identify the
instances that are the most unreliable. However, the choice of
the backward learning process is unclear, and the effective-
ness of relabeling is not fully studied.

As pointed out earlier in the paper, existing re-sampling
based methods either incur a high computational cost, making
them difficult to scale to a large number of classes, or demand
a high annotation cost (by relying on majority vote). As a
result, they provide insufficient support to an effective AL
process. In contrast, the proposed STARS model addresses
these limitations by reducing the noise rate with fast conver-
gence and theoretically guaranteed error reduction.

A Theoretical Framework of Active
Re-sampling

In this section, we present a formal theoretical framework to
clearly establish the benefit of active re-sampling. Through
a set of key theoretical results, we demonstrate the negative
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impact of noisy annotations to supervised learning in general
and show that systematic re-sampling in a passive setting
provides a viable solution to improve the generalization ca-
pability despite of noisy annotations. We then justify that
effective active re-sampling could further improve the label
complexity, which is essential for label-effective learning in
many critical domains.

Problem Setup
Let DT = {x, y}Nn=1 and DU = {x}Mm=1 denote the an-
notated dataset and unlabelled dataset, For each instance-
label pair {x, y}, we have x ∈ RL and y ∈ {−1, 1}
(y ∈ {1, 2, ...,K} for multi-class). We denote h as the clas-
sification concept from some hypothesis set H, h∗ is the
optimal concept provided by some learning algorithm (e.g.,
empirical risk minimization). Traditional pool-based active
learning takes sequential steps to update DT . At each step,
the machine samples a data instance from DU according to
an acquisition function f(·). The sample is then labeled by a
noisy annotator hα(·) and added to DT . Denote α as the de-
gree of annotation noise: α = p(hα(x) ̸= h0(x)), while h0(·)
is the oracle annotator, which is achieved as α approaches to
zero: h0(x) = lim

α→0
hα(x). Let A(hα) =

|{i∈[N ]:yi ̸=h0(xi)}|
N

denote the empirical data noise under the assumption that
all the data instances are annotated by hα. Note that A(hα)
is essentially the sample mean of N i.i.d. random variables
1(x)[hα(x) ̸=h0(x)], while α is the (unknown) population mean
of those variables.

When re-sampling is considered, the model also selects
data instances from current training set DT according to a
re-sampling function g(·). The selected data instance will
be relabeled by the same noisy annotator hα(·). The overall
re-sampling process is illustrated by Figure 7 of the Ap-
pendix (Yu, Shi, and Yu 2023).

Fixing Noisy Annotations through Re-sampling
Since the data noise may be introduced to different types
of data instances, an intuitive way to overcome the noise is
to increase the training set size by annotating more data to
enhance the chance of learning from more clean data. How-
ever, the asymptotic analysis given in the following corollary
shows that increasing the training size could even enlarge the
gap with the true error rate.
Lemma 1. Consider a multi-class problem with K classes
and assume all classes are equiprobable. As |DT | → ∞, the
gap between the error of a noisy classifier h∗ and its true
error rate on the clean test data converges to

(
1− K

K−1ϵ
)
α,

where ϵ = Ex∼DT
[h∗(x) ̸= y].

Proof of the Lemma is provide in the Appendix. Lemma 1
implies that the gap actually increases since ϵ is expected to
decrease when the training set DT becomes larger. In contrast,
reducing α can more effectively close the gap. However, di-
rectly changing α is challenging in practice as the annotation
behavior of humans is subtle and outside of the control of the
AL model. In fact, to improve the annotation quality usually
involves years of training and practicing, which can be very
expensive, especially in knowledge-rich domains. Next, we

show that re-sampling provides an indirect way to manip-
ulate the data noise, which can improve the generalization
capability despite of noisy annotations from humans.

The most straightforward way to perform re-sampling is
to uniformly sample from DT and then conduct a majority
vote. We show from the following theorem that even using
such a simple re-sampling strategy, we can systematically
reduce the data noise. To make the theoretical analysis more
intuitive, we focus our discussion on the binary problem.

Theorem 1. Consider a noisy data instance x that has been
repeatedly labeled for R > 2 with the same annotation noise
α < 0.5 and the final label is determined through a majority
vote. The probability of x’s final label remaining uncorrected
is guaranteed to be lower than α.
Proof sketch. Let αmaj

R denote the probability of x still being
uncorrected after conducting majority vote on R repeated
annotations. This corresponds to the correct label has been
annotated for no more than ⌊R

2 ⌋ times. Since the probability
to assign the correct label is α, we have

αmaj
R = F

(
⌊R
2
⌋;R, 1− α

)
=

⌊R
2 ⌋∑

n=0

(
R

n

)
(1− α)nα(R−n)

where F is the cumulative distribution function of binomial
distribution Bin(⌊R

2 ⌋;R, 1 − α). To avoid ties in majority
vote, we assume that N1 takes odd values. It is straightfor-
ward to show that αmaj

R < α for R = 3. We then use induction
to show that αmaj

R+2 < αmaj
R , which will complete the proof. A

detailed proof is provided in the Appendix.

From Passive Re-sampling to Active Re-sampling
While the majority vote based re-sampling can help to im-
prove the generalization capability of a model, it incurs a
high annotation cost, which does not provide a label efficient
learning scheme suitable for AL. Ideally, once a noisy data
instance has been correctly relabeled, it should not be re-
sampled or sampled with a smaller chance. Thus, an optimal
active re-sampling function g∗ should select training instance
according to its likelihood of being wrongly labeled. Given
such g∗, we can show that the noise rate will decrease much
faster than the passive re-sampling based on majority vote.
We first prove that using an optimal re-sampling function,
the noise rate is guaranteed to decrease. We then show it can
converge to a clean training set in a much faster rate. -1mm

Theorem 2. Given a re-sampling function g∗ that does not
revisit a corrected labeled instance x, then (i) the noise level
of the re-sampled dataset can be modeled by a Poisson dis-
tribution: Pois(λ) with λ = 1

1−α ; (ii) the probability of x’s
final label remaining uncorrected αpoi

R is guaranteed to be
lower than α after being relabeled R > 2 times.

Proof sketch. The proof of part (i) directly follows that g∗
no longer samples a data instance once its label is correct
and given the noise rate at α, it takes on average 1

1−α steps
to correct a label. Proof of part (ii) can be done by using
the analytical form of the Poisson distribution and through
induction. Details are provided in the Appendix.
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Figure 2: Noise rate decreasing speed: αmaj
R Vs. αpoi

R ; (a)
α = 0.3, 0.4; (b) R = 3, 5.
Numerical Analysis. Based on the theoretical results in
Theorems 1 and 2, we conduct important numerical analysis
to compare the noise rate decreasing speed between passive
and active re-sampling. In Figure 2 (a), we first fix α = 0.3,
λ = 1

1−α = 1.4 and show the uncorrected noise rate along
with the re-sampling frequency R. It is clear that active re-
sampling with an optimal re-sampling function converges to
a clean dataset (i.e., zero noise rate) significantly faster than
passive re-sampling.

We further loosen the requirement of using an optimal
re-sampling function by doubling λ as 2.8. This essentially
allows each noisy label to be re-sampled close to 3 times
(vs. 1.4 times as in the optimal setting). In this case, active
re-sampling still reduces the noise rate much faster than the
passive one. Further increasing α to 0.4 makes the conver-
gence much slower, which is as expected. In Figure 2 (b),
we fix the re-sampling frequency R = 3, 5 and investigate
the impact of α. It confirms that active re-sampling is more
effective in reducing the noise rate given the same R and its
advantage becomes more obvious with the increase of α.

Loss-Based Active Re-sampling. Both the theoretical re-
sult and numerical analysis demonstrate the clear advantage
of conducting active re-sampling for label-efficient learning
from noisy annotations. In addition, the numerical analysis
confirms that even with a much larger λ, which allows a data
instance to be revisited multiple times even after its label has
been corrected, active re-sampling can still reduce the noise
rate with a highly desirable speed. This further confirms the
potential of using a well-designed re-sampling function to
support AL from noisy annotations.

As stated above, a suitable re-sampling function should
sample according to the likelihood of a training instance-label
pair having the wrong label. Since the true labeling function
h0 is unknown, we can choose to use the model h∗ trained
on the noisy data as its proxy, which leads to a loss-based
re-sampling function: gLOSS(x) := p[y ̸= h∗(x)].

To see why gLOSS(x) is more likely to assign a higher
sampling score to a noisy instance, recall that h∗ is obtained
by minimizing some loss over the noisy training data:

h∗ =argmin
h∈H

Ex[Lh(x, y)] = argmin
h∈H

Ex[||h(x)− y||P ]

= argmin
h∈H

(1− α) E
x∼Dcle

T

[||h(x)− h0(x)||P ]+ (1)

α E
x∼Dnoi

T

[||h(x)− (1− h0(x))||P ] (2)

where we have partitioned the training set DT = Dcle
T ∪ Dnoi

T

into a clean and noisy sets. As a result, the loss is also parti-
tioned into two parts. Since α < 0.5 is assumed, h∗ would
make more effort on approaching the true label function h0

in the clean population Dcle
T . To minimize the overall loss, (3)

is more likely to be true than (4).

p(y ̸= h∗(x)|x ∼ Dcle
T ) > p(y ̸= h∗(x)|x ∼ Dnoi

T ) (3)

p(y ̸= h∗(x)|x ∼ Dcle
T ) < p(y ̸= h∗(x)|x ∼ Dnoi

T ) (4)

The inequality (3) implies that the model loss provides a
valid re-sampling criterion that has the ability to pay more
attention to the noisy data. To this end, we propose

gLOSS(x) := p[y ̸= h∗(x)] ∝ Lh∗(x, y) (5)

We further justify the effectiveness of loss based active re-
sampling by restricting our focus to a specific type of mod-
els, Maximal-Margin Classifiers (MMCs). Representative
MMCs, such as support vector machines (SVMs), have been
commonly used for AL due to their sparse nature and good
generalization capability. There are two additional key rea-
sons of using an SVM as a base learning model for active
re-sampling: (i) analysis of error bound could be conducted
through the number of support vectors (see the theorem be-
low), and (ii) the important spatial (or geometric) properties
in the dual space could lead to more effective re-sampling
mechanisms (detailed in the next section).

Theorem 3. Relabeling a data instance with a high (hinge)
loss is guaranteed to reduce the error bound for an SVM
classifier hSVM(x).

Proof sketch. The proof follows the leave-one-out (LOO)
error analysis of SVMs: the average LOO error for N samples
is an unbiased estimate of the average generalization error for
samples of size N − 1 (Mohri, Rostamizadeh, and Talwalkar
2018). It also leverages the important property of support
vectors with a large loss. Details are in the Appendix.

Spatial-Temporal Active Re-sampling
A loss based function provides a valid active re-sampling
mechanism with guaranteed performance improvement when
being used with MMCs. However, since re-sampling will be
conducted along with AL, which is essentially a dynamic
process, it is critical to consider the temporal re-sampling
order of the training instances. As we show below, simply
re-sampling by following the order of the model loss on each
training instance may lead to a slow convergence.

Determining the Temporal Re-sampling Order
We first show that the temporal order of re-sampling plays an
important role in AL and the loss based re-sampling might
lead to slow convergence or even trapped in a local optimum.
As shown in Figure 3 (a), the clean data have two separate
classes, while its noisy version has two incorrectly labeled
instances as shown in Figure 3 (b). They represent two types
of data instances that have non-zero losses with xi being an
outlier and xj being on-the-margin. Using the model loss, xi

will be re-sampled before xj due to a larger loss. However,
this may deviate from the ultimate goal of re-sampling, which
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Figure 3: Importance of temporal re-sampling order (a) clean data, (b) noisy data, (c) loss based re-sampling, (d) an alternative
(and better) temporal order for re-sampling

is to clean the noises for the purpose of recovering the opti-
mal decision boundary with clean data shown in Figure 3 (a).
As the model first corrects the outlier xi, the decision bound-
ary will be misplaced temporally as shown in Figure 3 (c).
Such distortion affects the accuracy of loss evaluation thus is
harmful for the next re-sampling step as the on-the-margin
sample might no longer stand out from other trivial (clean)
instances with the drastic change of the decision boundary.
An alternative (and better) temporal order of re-sampling
is to first correct the on-the-margin instance xj to push the
decision boundary towards the right direction. While the de-
cision boundary has been effectively shifted, the margin size
remains almost the same as opposed to a significant shrink
of the margin size in Figure 3 (c). This nice property benefits
from the special design of the SVM loss function that uses a
l1-loss to penalize large errors, which makes the margin less
sensitive to outliers. In the next re-sampling step, it further
corrects the outlier xi to make a final adjustment to the deci-
sion boundary. Figure 3 (d) shows that this best recovers the
desired decision boundary.

Following the above analysis, we categorize all train-
ing instances into three types: Type-I: on-margin noise,
Type-II: outlier noise, and Type-III: clean data.
Type-I is most useful for active re-sampling as revealing
the true labels of them has a direct impact on the current
decision boundary. Type-II is also useful for re-sampling
as revealing their true labels helps describe the data distribu-
tion more precisely. However, correcting their labels could
lead to model oscillation especially in the early stage of AL.
Ideally, this type of data should be re-sampled after Type-I.
Type-III provides no value for active re-sampling and
should attract least attention from the sampling function.

Design of the Active Re-sampling Function
In order to properly sample instances from the Type-I
group, it is essential to quantify the instance distance to the
current decision surface. To this end, we propose to use the
magnitude of the SVM decision function as re-sampling cri-
terion. An SVM classifier can be formulated as the linear
combination of basis functions h(x) = w⊤ϕ(x), where w
can be learned as follows:

argmin
w

∑
Error[ynh(xn)] + λ||w||2 (6)

with hinge loss Error[ynh(xn)] = [1− ynh(xn)]+.
Since the magnitude of SVM decision function (DEC) is

proportion to the perpendicular distance of a data instance to
the current decision surface, we define

gDEC(x) = |w⊤ϕ(x)| ∝ |yw⊤ϕ(x)|
||w||

(7)

where the last term quantifies perpendicular distance. We
have used the fact that y ∈ {−1, 1} and ||w|| is a constant for
every input x. As a result, gDEC favors data instances located
close to the current decision surface, which gives preference
to sample Type-I instances before others.

Solely relying on gDEC for the entire AL process may
overly penalize Type-II instances, which makes them re-
sampled even after some Type-III instances. To address
this issue, we propose to leverage label inconsistency (LIC)
to encourage sampling Type-II instances:

gLIC(x) =
∑

(xi,yi)∈DT

||k(x, xi)w⊤ϕ(xi)− y|| (8)

where k(xi, xj) = ϕ(xi)
⊤ϕ(xj) is a kernel function. gLIC(x)

measures how neighborhood predictions of x disagree with
its label, y. A large score means that the close neighbors of
x (evaluated using the kernel function) are predicted to have
different labels than y, which implies x is more likely to be a
Type-II instance (i.e., outlier).

A Joint Active Re-sampling Function. Both gDEC and
gLIC are defined to leverage the key spatial information from
the global (i.e., distance to the decision surface) and local
(i.e., difference from neighbor instances) perspectives, to
give preference to Type-II and Type-I instances, respec-
tively. To achieve a desired temporal re-sampling order as
described earlier, we propose to dynamically balance these
two spatial re-sampling criteria to first re-sample on-margin
instances and then shift to outliers to stabilize the overall AL
performance and avoid slow convergence:

gSTARS(x) = (1− τ)gDEC(x) + τ
[
gLIC(x)

](−1)
(9)

where ‘STARS’ standards for Spatial Temporal Active Re-
sampling and 0 ≤ τ ≤ 1 is initialized as 0 and will continue
to increase during the entire AL process. Note that the depen-
dencies of the re-sampling function on w can be removed
through the dual representation. In particular, substituting w
with the optimal dual solution leads to

gSTARS(x) = (1− τ)|k⊤(x)(a ⊙ y)|+
τ ||k(x)⊙ h − y1N ||(−1) (10)

where k(x) = [k(x1, x)..., k(xN , x)]⊤,y = (y1, ...yN )⊤,
h = [h(x1), ...h(xN )]⊤, and a = (a1, , ...aN )⊤ are Lagrange
multipliers with an > 0 indicating xn is a support vector. The
first term in (10) leverages the feature relationship while the
second term focuses on the label relationship. Together, these
two terms capture the full spatial information from the repro-
ducing kernel Hilbert space induced by kernel k(·, ·).
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Corollary 1. Relabeling a data instance with a low gSTARS

score is guaranteed to reduce the error bound for an SVM
classifier hSVM(x).

Reducing High Re-sampling Variance. At the early stage
of AL, the model prediction on specific data instances tends
to have a large variance as AL is supposed to change the
model drastically with the newly labeled instances and the
training is unstable due to limited training data. Such a high
variance will transfer to the proposed re-sampling function.
As a result, a score [gSTARS(x)](t) evaluated at the t-th itera-
tion alone may not truly reflect the desirable re-sampling need
due to the impact of the high variance. In our experiments,
we observe that the gSTARS(x) of a clean data instance is both
high and stable during the learning process while among the
instances with a low gSTARS(x), only true noisy data would
have steady low scores for a consecutive number of learn-
ing iterations. Similar observations has also been reported in
curriculum learning based models, where the truly difficult
data instances tend to have consistently large losses during
the model training process. To address the high re-sampling
variance, we propose to further incorporate a memorization
unit that leverages the historical re-sampling scores of a data
instance. Specifically, we expect the impact of the least re-
cently evaluated gSTARS(x) quickly fade out, which can be
achieved by computing the exponential moving average:

[gSTARS(x)](t) = (1− γ)[gSTARS(x)](t) + γ[gSTARS(x)](t−1)

where γ is the decay factor, which decreases along with AL
as the model becomes more stable.

Experiments
Synthetic Data Experiments
In the synthetic experiments, we compare STARS with loss
based re-sampling (LOSS) and two of its individual compo-
nents: DEC and LIC. Figures 4 (a)-(d) show the snapshots of
the decision boundary (solid line) predicted by each model
after 500 annotations (400 sampling+100 re-sampling). We
use an uncertainty based sampling strategy, BvSB (Joshi,
Porikli, and Papanikolopoulos 2009) for AL to sample new
data instances. Margins are plotted (dashed lines) and data
instances are plotted in red and blue squares. The instances
selected for relabeling are colored in orange while the ones
being relabeled correctly are rounded by blue circles. Figure
4 (g) shows the optimal decision boundary achieved by AL
on clean data. As we compare each decision boundary, we
observe that although STARS does not correct as many noisy
samples as DEC and LOSS do, its converged decision bound-
ary is closest to the optimal one. This confirms the importance
of the re-sampling order: correcting the noise in the ‘critical’
data is more important than correcting more noisy data in
random. Specifically, in Figure 4 (c) LOSS puts too much
attention to correct the outlier noises (Type-II). Although
a large portion of the outlier noises are successfully corrected,
they contribute marginal help in terms of forming the true
decision boundary. Figure 4 (b) shows that LIC exhibits the
same ‘exploration’ behavior as LOSS does and ends up with
the similar distorted decision boundary. Meanwhile, DEC

in Figure 4 (a) demonstrates a clear ‘exploitation’ behavior
as expected. We can observe that DEC does approach to the
true decision boundary closer than LOSS due to the focus
on correcting the noises near the decision boundary. How-
ever, the converged decision boundary poorly depicts the data
distribution away from the decision boundary as DEC lacks
proper exploration.

We provide a more detailed view on how STARS adjusts
the re-sampling order according to different stages of AL to
achieve the ‘exploit-then-explore’ behavior in the Appendix.
Overall, the re-sampling strategies all perform better than
the random re-sampling or no re-sampling. This can also be
reflected by Figure 1 (b). Last, we show the AL curve that
captures the model performance in entire learning process in
Figure 4 (h), which further confirms that STARS maintains
the advantage in model fitting for most parts of the learning.

Real Data Experiments
We select 5 real-world datasets (Dua and Graff 2017; Shi
and Yu 2018) from different domains: medical, bioinformat-
ics, image recognition, and automatic systems. The chosen
datasets have features varying from 8 to 1,554 and classes
ranging from 10 to 50. The annotation noise α is set to 0.3.
For STARS, we linearly increase τ from 0.2 to 0.7 and fix γ
to 0.2. Additional details are in the Appendix.

In addition to two proposed re-sampling methods and us-
ing random re-sampling as a baseline, we also compare with
the most related re-sampling work that is applicable to our
setting, impactEXP (Lin, Mausam, and Weld 2015). The
model is originally designed for binary problems and the
extension to multiple classes can be computationally pro-
hibitive as the number of classes increases. Thus, we can
only run this baseline on datasets with smaller classes (i.e.,
Yeast and Auto-drive) with a meaningful sampling time for
AL. Figures 5 (a)-(e) show that STARS consistently outper-
forms other baselines on all datasets. Among all the models,
impactEXP improves slowly mainly because it adopts ma-
jority vote, which has been proved to be less efficient than
the proposed re-sampling strategies equipped by LOSS and
STARS. LOSS also shows a competing performance on three
datasets with a relatively large feature space. The increase
of the feature size makes it more challenging to accurately
capture the spatial properties of the feature space but LOSS
is more robust to this change. As part of the ablation study,
Figures 5 (f)-(j) compare STARS with its two components,
LIC and DEC. Again, STARS shows a clear advantage on all
datasets, which justifies the effectiveness of spatial-temporal
based re-sampling. Some other re-sampling methods are re-
stricted to binary problems and are expensive to generalize
to multiple classes. We compare with them in binary settings
and the results are consistent with the multi-class results.
Additional results and ablation studies are in the Appendix.

Extension to Other Models
While SVM has been used to demonstrate the proposed the-
oretical framework on active re-sampling, it is important to
note that many fundamental components of the framework
are generally applicable to other classification models. To
demonstrate the potential extension, we apply STARS to
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Figure 4: Results on synthetic data: (a)-(e) The snapshots at the convergence stage of AL showing the decision boundary of the
model and the distribution of the re-labeled samples picked by different re-sampling strategies over the entire AL process; (f)-(g)
decision boundary of no-re-sampling and AL from clean data); (h) AL performance comparison.
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Figure 5: Real-world AL Results: (a)-(e) Comparison with other baselines; (f)-(j) ablation study.
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Figure 6: Re-sampling results using a DNN

deep neural networks (DNN) through the general deep ker-
nel learning (DKL) framework (Wilson, et al. 2016). Under
DKL, ϕ(x) in (6) is achieved through a non-linear mapping
given by a deep architecture and h(x) can be interpreted as
the logit, which is obtained through a linear mapping from
ϕ(x) through w. The logit shares a similar property as the
magnitude of the SVM decision function: a small absolute
logit implies x is close to the decision boundary. Since in
active deep learning, the samples are usually labeled in a
batch, we also adjust the re-sampling strategy to use small
batches. The detailed configuration and additional results can
be found the Appendix. Figure 6 shows that the loss-based

re-sampling strategy performs very close to the random re-
sampling strategy, which means that the magnitude of the loss
is less indicative of the potentially mislabeled data points for
deep learning models. Meanwhile, STARS shows a clear ad-
vantage over both strategies, which justifies the effectiveness
of the proposed temporal re-sampling order. Furthermore, the
label consistency criterion also becomes more effective due
to an improved data representation ϕ(x) learned by a DNN.

Conclusion
We focus on AL from noisy annotations by developing a
formal theoretical framework to prove the negative impact
of annotation noises and suggest effective ways to conduct
active re-sampling with performance and convergence guar-
antees. A novel spatial-temporal active re-sampling (STARS)
model is designed accordingly and tested on both synthetic
and real-world data under noisy settings. One future direction
is to develop the theoretical guarantee on the reduction of the
error bound for deep learning models. Meanwhile, it is also
interesting to extend our model to a non-uniform annotation
environment, where the annotation error changes along with
the annotator’s domain knowledge, skill, and other factors.
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