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Abstract
In this paper, we aim to explore novel machine learning (ML) techniques to facilitate and accelerate
the construction of universal equation-Of-State (EOS) models with a high accuracy while ensuring
important thermodynamic consistency. When applying ML to fit a universal EOS model, there are
two key requirements: (1) a high prediction accuracy to ensure precise estimation of relevant
physics properties and (2) physical interpretability to support important physics-related
downstream applications. We first identify a set of fundamental challenges from the accuracy
perspective, including an extremely wide range of input/output space and highly sparse training
data. We demonstrate that while a neural network (NN) model may fit the EOS data well, the
black-box nature makes it difficult to provide physically interpretable results, leading to weak
accountability of prediction results outside the training range and lack of guarantee to meet
important thermodynamic consistency constraints. To this end, we propose a principled deep
regression model that can be trained following a meta-learning style to predict the desired
quantities with a high accuracy using scarce training data. We further introduce a uniquely
designed kernel-based regularizer for accurate uncertainty quantification. An ensemble technique
is leveraged to battle model overfitting with improved prediction stability. Auto-differentiation is
conducted to verify that necessary thermodynamic consistency conditions are maintained. Our
evaluation results show an excellent fit of the EOS table and the predicted values are ready to use
for important physics-related tasks.

1. Introduction

Background. Improving our understanding of high-energy-density physics and advancing research in the
important fields of inertial confinement fusion (ICF) and planetary science relies on accurate
equation-of-state (EOS) models, which cover a wide range of thermodynamic conditions [1, 2]. As
technology is improving, experimental measurements of EOS are accessing higher and higher density and
temperature conditions, such as those encountered in imploding ICF targets [3, 4] and white dwarfs [5].
Measurements at such conditions are extremely difficult to obtain and data are therefore sparse and mainly
serve as benchmarks for the accuracy of theoretical models, which are also constantly evolving in both
accuracy and range of conditions covered [6].

Recently, an improved version of the first-principles EOS table (iFPEOS) for deuterium is published [7],
which is an update on FPEOS [8, 9] based improved theoretical methods such as ab initiomolecular
dynamics (AIMD). These methods are driven by density functional theory (DFT), where advanced
meta-generalized gradient approximation (meta-GGA) exchange-correlation (XC) free energy density
functional TSCANL [10], a high-accuracy non-interacting orbital-free free energy density functional
LKTFγTF (see details in [7]) is used. Compared to previous models [11–15], iFPEOS showed better
agreement with experimental measurements [4, 16–18] for temperatures T∼ 60 000K and pressures up to
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P∼ 200GPa. However, for higher T− P regimes, iFPEOS fails to close the gap between latest theory and
experiment. At such extreme conditions, both theoretical and experimental work can be considered in their
pioneering stages and iFPEOS suggests that first-principles treatment beyond DFT might be necessary.
Additionally, at such extreme conditions, first-principles simulations are challenging from the computational
point of view as AIMD are significantly time-consuming and require a large allocation of computing
resources. An AIMD run, corresponding to one point in iFPEOS, could take approximately a few hours to
several days running on tens to hundreds of cores depending on thermodynamic conditions and
methodology, with the low-T, low-density orbital-based Kohn–Sham DFT calculations being much more
computationally demanding than the high-T orbital-free AIMD ones. Therefore, the immediate future of
theoretical EOS models relevant to ICF faces two great challenges: (1) The high computational demands of a
single calculation arising from the need to go beyond DFT; (2) The need formany such calculations in order to
finely sample a wide range of thermodynamic conditions. As current developments in efficient ab initio
algorithms and the performance of supercomputing clusters is relatively slow and incremental, one cannot
overlook the potential of machine learning (ML) methods in the fast generation of dense and accurate EOS
models from sparse data.

ML based EOSmodeling. In recent years, ML has been increasingly adopted by the scientific research
community to address the data-computation extensive challenges [19]. Given available observations, an ML
model can be trained to learn the underlying patterns in the data, which can then be used to make a
prediction at any density-temperature point of interest. A promising solution to build a universal EOS model
is to leverage an iFPEOS table of finite size to train an ML model that can recover any missing values in the
table and hence explain the wide range of behaviors of deuterium EOS. As some recent efforts in using ML to
model EOS [20, 21] show, using a neural network (NN) surrogate model to provide EOS information is
viable and provides advantages such as saving the memory cost of restoring all EOS tables, providing
differentiability for downstream tasks, and accelerating simulations. Another important factor is as
aforementioned, that an NN model can provide a universal approximation. This implies that an NN model
can achieve any desired error rate on training. Plus, unlike interpolation methods which usually require
neighborhood knowledge, a trained NN model can predict at any input point.

In our work, we propose novel extensions of a standard NN model to an encoder-decoder structure and
improve the ML model design to address the unique challenges for modeling the EOS table. We first formally
introduce these key challenges either identified by prior work or newly discovered by us. First, both the input
and the output span a very wide range. As an example, figure 1 visualizes an iFPEOS table used in our
experiments. The two input features, including density and temperature, cover a wide range that reaches
10−6 ∼ 103 g cm−3 and 10−5 ∼ 105 eV, respectively. Similarly, the two outputs, i.e. energy and pressure, span
more than eight orders of magnitude. Meanwhile, the input-output dependency in certain ranges is highly
sensitive, where a small change in the input may result in a significant variation in the output. This poses a
major challenge for the commonly used gradient-based ML models, such as neural networks, as the variance
of predictions will be high where the training data is sparse [22, 23]. Second, the distribution of data entries
is highly skewed within the table. As can be seen from figure 1, while there is a decent amount of data entries
in certain regions, the table becomes much more sparse or even completely empty in other regions. The
imbalanced data distribution and the high data sparsity in certain regions make it challenging to train
data-intensive ML models (e.g. deep neural networks or DNNs). Last, most advanced ML models, such as
DNNs, leverage deeply connected layers to perform non-linear transformations of the input to generate the
output. While these models can usually produce highly accurate predictions to match the desired outputs,
they are not sufficient for effective application in real-world physics-related applications. Due to their
black-box nature and limited data supervision, the learned function may not necessarily follow the physical
rules. Therefore, there is a risk that these models may offer false explanations that violate some fundamental
physics relations. In this work, we intend to first improve the predictions of the model, then verify if the
model can minimize the violation of physics relations.

Overview of our approach. To address the key challenges as outlined above, we propose a
meta-learning-based Deep Regression model to jointly predict Energy and Pressure (referred to as DREP)
after being trained from a finite-sized iFPEOS, aiming to realize a universal EOS model. More specifically, to
deal with the imbalanced data distribution and extremely sparse regions, we apply log transformations on
both the inputs and outputs before training the DREP model. We compare different types of ML models,
showing that most ML models have improved performance with the transformation. NN models are
especially good at re-creating the original space and can fit the targets well in all regions. Furthermore, we
propose to leverage a meta-learning-based training process to first learn a model that can fit the target
properties E and P well locally and then generalize to the entire region by giving the model more context
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Figure 1. Visualization of the dataset in the original space.

points. We utilize the model’s ability to learn from multiple tasks instead of simply running through random
batches. This design also provides more flexibility during the test phase when the model is used in practice
after being trained.

To achieve the meta-learning-style training process, DREP augments a Neural Process that simulates a
stochastic process [24], like a Gaussian Process (GP). On the one hand, DREP inherits the strong
function-fitting capacity of a deep neural network to provide accurate predictions. On the other hand, DREP
has the advantage of enabling accurate uncertainty modeling. For a standard NN, we can expand the outputs
to predict not only P and E but also their corresponding variances. However, there is no means to ensure the
quality of the predicted variance for a standard NN. By simulating the statistical consistency of a stochastic
process through kernel regularization, DREP can faithfully report the predictive uncertainty. In the unseen
range, the uncertainty will increase accordingly. Therefore, we are able to identify the uncertainty of the
model when the predictions are less reliable through uncertainty quantification. Additionally, we use an
ensemble model to improve the stability of model predictions especially when generalizing or applying to
downstream tasks. Finally, to verify the thermodynamical consistency of the proposed DREP model, we
perform a check of Maxwell’s relation regarding energy and pressure. The check is to evaluate the
commutativity of the partial derivatives of the predicted pressure and internal energy with respect to density
and temperature, relating the two separate outputs. We use auto-differentiation to compute the partial
derivatives and find the resulting relative difference between the prediction and Maxwell’s relation-induced
calculation result to be on the order of 10% or less. Unfortunately, due to the lack of reference free energies,
entropies, and chemical potentials in conjunction with the current form of the DREP model, we are unable to
verify if other relations regarding thermodynamic consistency, such as the Gibbs-Duhem relation, hold.

Summary of contributions.We summarize our contributions as follows:

• We show superior prediction results using an NN model and the remaining challenges in terms of stability,
consistency, and uncertainty quantification, which justify the unique design of the proposed DREP model.

• We propose the DREP model, which can more accurately predict pressure and internal energy values at
arbitrary density and temperature points.

• We propose kernel regularization to ensure faithful uncertainty quantification.
• We propose to use an ensemble model to improve the stability of model predictions.
• We evaluate the consistency of the DREP model using auto differentiation and a PDE-informed thermody-
namic violation measure.

• We provide detailed experimental results to demonstrate the prediction performance of DREP as well as
ablation studies and effectiveness on other physics-related downstream tasks.

2. Related work

In recent years, machine learning, especially deep neural networks (DNNs) [25], has been widely used not
only in computing and data-mining fields [26] but also in many cutting-edge interdisciplinary scientific
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research fields [27–29]. With this trend, physics-informed machine learning [30–35] or machine learning for
physics [36–38] has attracted increasing attention with promising results. Some recent works aim to develop
machine learning (ML) models consistent with real-world physical phenomena. To this end, one popular line
of research is to develop data-driven models that rely on observed data (that reflects the underlying
mathematical principles) to encode physical rules in the model. Alternatively, specialized neural network
architectures with different types of inductive biases [39] (e.g. convolutional networks [25] to ensure
translational symmetry) have also been developed to encode the prior physics knowledge in the ML
models [34, 40]. DNNs can also be trained by incorporating the underlying physics into loss functions or
regularization terms. Finally, hybrid approaches that aim to integrate different physics-informed neural
network approaches are also being developed [41–43].

Regression models provide a powerful vehicle to replace expensive numerical calculations or
time-consuming simulations by quickly predicting desired physics properties once being trained. Many
classic models like linear/polynomial regression and DNNs have been commonly used. However, these
models primarily focus on learning from data with limited flexibility to incorporate domain knowledge.
When physics-informed knowledge or constraints are considered, kernel-based methods like kernel
regression [44, 45], numerical GPs [46, 47], and deep kernel learning [43] have been frequently leveraged
with promising results.

Modeling the EOS table is an important task in high-density-energy computational physics. Having a
reliable EOS table that covers a wide range is often difficult because of the shortcomings of various
computational models [11, 12] and the discrepancies among these methods in the overlapping range [7–9].
iFPEOS provides a more accurate model that covers a wide range of density and temperature values [7].
However, the high computational cost makes it challenging to leverage iFPEOS to generate the desired
physics quantifies at arbitrary points. While it is possible to train existing regression models, including kernel
methods, from limited iFPEOS data points, these approaches fall short in addressing the key challenges as
identified earlier in the paper.

When modeling physics-informed problems, differential equations provide an effective means to encode
important knowledge or constraints. Although using neural networks to model ordinary or partial
differential equations has been studied for a long time [48] and improved recently by PINN
(physics-informed neural networks) [30], to our knowledge, there is no prior work that uses indirect PDEs of
multiple-outputs (e.g. pressure and internal energy) to verify the thermodynamic consistency without
modeling the underlying quantity (e.g. free energy), which is achieved by the proposed DREP model.

3. Methodology

In this section, we describe the detailed design of DREP. We start with a formal problem formulation of
multi-output regression. We then summarize preliminaries that cover a set of classical regression models.
Next, we present the model architecture and discuss how we design the model to achieve each of its key
properties in order to address the important EOS modeling challenges.

Problem formulation. The main problem—EOS modeling—is a multi-output regression problem. In a
standard multi-output regression setting, we have a set of input features x ∈ RD, and train the model to
predict some continuous output response y ∈ R or multiple responses y ∈ RL. In the EOS modeling
problem, the input features include density ρ and temperature T and the target outputs are pressure P and
internal energy E: x= (ρ,T)⊤,y= (P,E)⊤.

3.1. Preliminaries
A key challenge with the EOS table data is the wide ranges that the physics quantities span. We perform log
transformations to make the inputs more accessible for the ML models. The transformation is simple and
also makes visualizations of the predictions more accessible. The physics quantities should also satisfy certain
boundary conditions (e.g. near density ρ= 0 and temperature T= 0). We use extrapolation to generate
synthetic training data near the boundary and add these points to the training process. Later we will show
how these transformations change the fitting results and the generalizing ability of the model. Below, we give
an overview of standard regression models that can be used for EOS modeling.

Linear/polynomial regression. Linear regression uses a linear function of the input features ŷ= w⊤x to fit the
response y, where x= (1,ρ,T)⊤ is the feature vector in the EOS problem and w is a set of coefficients.
However, the expressiveness of a linear function is limited. We can use polynomial feature expansion to
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improve the flexibility of the model, which includes the pth power of each component in x with the
interaction terms. The coefficients can be learned by minimizing a mean squared error:

LPR

(
{xn,yn}Nn=1

)
=

1

N

N∑
n=1

(
yn −w⊤xn

)2
. (1)

Extension to multiple outputs is straightforward, where the coefficient vector w is replaced with a coefficient
matrixW ∈ RD×L to fit multiple responses y ∈ RL: ŷ=W⊤x. Polynomial regression (PR) using high-order
polynomial features is prone to overfitting. We can use regularization to reduce overfitting, which we will
introduce next together with the kernel trick.

Kernel methods. Ridge regression (RR) adds the l2 norm of the coefficients to address overfitting. The
regularized loss function can be formalized as:

LRR =
L∑

l=1

γl

(
N∑

n=1

lSE
({
x,y(l)n

})
+λw(l)⊤w(l)

)
(2)

where γ l is the weight for the lth output and λ is the regularization weight. For one entry of the output y(l),

we still use the mean squared error: lSE({x,y(l)}n) = (y(l)n −w(l)⊤xn)2. We can adopt the matrix view of the
RR problem, and the solution can be formed asW= (X⊤X+λI)−1X⊤y, where X is the design matrix
(stacking x⊤n ). The term XX

⊤ is called the Gram matrix [49]. We can also allow implicit feature
representation using the kernel trick. Kernel ridge regression (KRR) introduces a kernel-represented Gram
matrix K, where Kij = k(xi,xj) with k(·, ·) being a kernel function [49].

GPs also use the kernel trick to build random processes. In a standard GP formulation, the prior is given
as a 0-mean Gaussian distribution with the Gram matrix K being the covariance matrix p(z) =N (z|0,K).
The conditional probability distribution of the target output is also a Gaussian p(y|z) =N (y|z,β−1IN).
Thus, the marginal distribution of the outputs is still Gaussian p(y) =

´
p(y|z)p(y)dy=N (y|0,C), where C

is the covariance matrix. The elements of C are given by C(xi,xj) = k(xi,xj)+β−1δij. The prediction for an
unseen input xN+1 can also be expressed in the Gaussian formN (yN+1|y) where the mean and variance are
m(xN+1) = k

⊤C−1y, σ2(xN+1) = c− k⊤C−1k with c= k(xN+1,xN+1)+β−1. The advantage of the GP
model is that it can fit the data well locally and provides a natural statistical interpretation that directly gives
us a covariance matrix instrumental to quantify the uncertainty.

Deep neural networks (DNNs). A DNN consists of multiple (usually deeply connected) layers of nodes that
play the role of artificial ‘neurons’. All these weights are the parameters of the DNN that are updated during
training such that the DNN can approximate the true underlying function and generalize well during
inference.

Comparing DNNs with the kernel-based models, we will see the following core differences: First, DNNs
can be trained using stochastic gradient descent with is much more scalable than a GP with respect to the
number of data points. Second, instead of relying on either the original features or a fixed kernel function,
DNNs can learn a latent feature space optimized for the downstream tasks (e.g. regression or classification).
In this task, we will take advantage of the second property and utilize the flexibility of DNNs to design a
specific model that performs well for the problem. The entire DNN can be expressed as a function:
y= fΘ(x), whereΘ denotes all the weights in the network. Besides modeling the outputs y= (P,E)⊤, we can
make the DNN generate a probabilistic output by outputting both the mean and the variance in the need of
quantifying the uncertainty of the prediction. The model is trained by using a log-likelihood-based objective
that simplifies to Mean Squared Error loss when the output variance is treated as constant. Such a
DNN-based regression model is shown in figure 2.

One major limitation of standard DNNs is that they require a lot of labeled data to be properly
trained [50], which makes it challenging to apply for the EOS problem due to highly sparse training data.
Furthermore, a DNN trained over limited data may suffer from under-fitting, overfitting [51], or both at the
same time. A principled uncertainty quantification mechanism is needed to detect when the model may
provide wrong predictions to inform decision-making. The proposed DREP model is designed to address
these limitations, which will be detailed next.

3.2. Deep regression to jointly predict energy and pressure
We first introduce a task-based meta-learning style training process for the EOS regression problem.
Afterward, we develop the DREP architecture for the training process. We then carry out a theoretical analysis
that shows the advantage of this unique design over a standard DNN, in terms of sequential inference,
thermodynamic consistency, and accurate uncertainty quantification capabilities.
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Figure 2. The DNN regression model.

3.2.1. A task-based meta-learning style training process
In real-world physics regression problems, we are likely to have a limited number of available training data
points (e.g. limited data for the EOS table fitting problem due to expensive Molecular Dynamics
simulations). For this work, we assume that we have a limited-data datasetD with N tr labeled data points in
the training set (Dtr = {xn,yn}Ntr

n=1), and N ts data points in the test set (Dts = {xn,yn}Nts
n=1).

To better utilize the limited training data, inspired by few-shot learning approaches [24], we propose to
use a task-based meta-learning-style training process. To this end, we consider two phases: a meta-training
phase to acquire the global knowledge of the true underlying regression function, and a meta-testing phase to
use the global knowledge in EOS table prediction.

The DREP model accesses the information ofDtr in the meta-training phase to acquire the global
knowledge for the EOS regression task. Specifically, in the meta-training phase, we consider a large number
of randomly sampled tasks to acquire the required global knowledge for accurate regression. Each
meta-training task consists of a support set S = (XS,YS) and a query setQ= (XQ,YQ). These sets are
constructed by randomly sampling NS +NQ data points from the N tr training data points, assigning the NS

data points to the support set, i.e. Sn = (XSn ,YSn) = {(xn,yn)}NS
n=1,(xn,yn) ∈ Dtr, and assigning the NQ

points to the query set i.e.Qn = (XQn ,YQn) = {(xn,yn)}NQ

n=1,(xn,yn) ∈ Dtr. The support set and the query set
of the training task represent two local views of the true regression function, and the DREP model training is
formulated such that given one local view of the true function, i.e. the support set view, the model has to
accurately predict the query set. In other words, given the support set information, the model has to be able
to predict the query set (additional details of model training are provided in section 3.3.1). Such task-based
local view formulation of the objective enables the model to train on a large number of tasks, with multiple
local views, and is expected to guide the model to gain global knowledge of the target function.

From the meta-training phase, the DREP model is expected to acquire the desired meta-knowledge
required for accurate downstream EOS regression. We then introduce the meta-testing phase to evaluate the
DREP model’s acquired knowledge. The meta-testing consists of one test task Ttest in which all the training
data constitutes the support set i.e. Stest =Dtr, and all the test data points constitute the query set i.e.
Qts =Dtest,Ttest = (Stest,Qtest). We consider all the training in the support of the meta-test task, i.e. Stest =Dtr

to ensure the DREP model has a global view of the true regression function. With the global view of the
function, the model makes predictions on the test set {xi}Nts

n=1.
As stated above, the rationale behind using the meta-learning style training for the DREP model is that the

data from the EOS table is scarce and sparse, and the underlying function is difficult to learn. To elaborate,
although P and E increase with ρ and T in most regions, there are also the plateau region and other refined
local trends. If we simply use one model to learn the entire function, we might either underfit and not
describe the training data well, or overfit and lose the ability to generalize. By using the meta-learning style
training and having the model learn many local functions first through task-based training, we increase the
ability to learn the entire P and E functions when given the global view in the meta-testing phase.

DREP architecture. Inspired by Conditional Neural Processes [24], we develop an encoder-decoder structure
for the EOS regression problem as shown in figure 3. The proposed DREP model considers the neural
network structure fψ(·) as the decoder, and introduces an encoder fΘ(·) that encodes the entire support set
information to a vector r. The encoder enables the DREP model to capture the knowledge of the support set
as a reference for the decoder so that the decoder can consider this reference information to make accurate
predictions. Specifically, the reference vector r is concatenated with a query point in XQ and passed to the
decoder to predict the output.
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Figure 3. Architecture of DREP. Compared to a standard DNN, both the aggregated r and decoder capture the general knowledge.

Remarks.We propose to use the DREP model with the encoder-decoder structure because it surpasses the
standard DNN by incorporating general knowledge. We further note that the DREP model can realize the
DNN as a special instance when it completely ignores the information carried through the encoder structure.
This can be proven by a straightforward example. Consider a K layer DNN represented by fψ(·) withm
dimensional input. Assume the input layer consists of D neurons. LetWm×D represent the weight matrix
corresponding to these D neurons. Consider an equivalent DREP model with l dimensional encoder
representation r ∈ Rl and K layers in the decoder structure similar to the DNN. Now, for an equivalent DREP
model, consider D neurons in the first input layer of the decoder. LetWl+m×D represent the weight matrix
corresponding to these D neurons. For the DREP model, whenWl×D (i.e. the components in the weight
matrix corresponding to the representation r) are all zero, the representation r is ignored, and the DREP
model reduces to a DNNmodel. Equivalently, when the representation r is all zero, the representation carries
no information, and the DREP model again reduces to the DNN model. In both of these cases, both the
network training and inference for the two models are identical. In all other cases, DREP model also considers
the information in the representation r due to which it is expected to perform better than the neural network
as r can provide useful reference information for training and inference.

3.2.2. Sequential inference and fast adaptation to new training data
The proposed DREP model introduces the encoder-decoder structure that enables the model to capture the
knowledge in the training data in two ways: (1) through the parameters of the decoder similar to a standard
DNN, and (2) through representation r generated by the encoder using the support set. Specifically, during
inference, the encoder structure aggregates all the training data to an embedding r that acts as the compact
representation. For training dataset with NS data points, r is given as

r=
1

NS

NS∑
n=1

fΘ (xsn ,ysn) =
1

NS

NS∑
n=1

rn , (xsn ,ysn) ∈ Sn. (3)

The representation is permutation invariant over the input data [52] that encodes all the training data and
aggregates the resultant NS embeddings. This representation can be expressed via a sequential update rule:

r=
1

NS

NS∑
n=1

rn =
1

NS
rNS +

NS − 1

NS

1

NS − 1

NS−1∑
n=1

rn =
1

NS
rNS +

NS − 1

NS
rold (4)

where rold =
1

NS−1

∑NS−1
n=1 rn is the aggregated representation of the first NS − 1 data points, and 1

NS
rNS is the

encoder embedding for the new Nth
S data point. This sequential update rule enables the model to discard the

training data once observed, and also incorporate new information/observations for improved prediction
during the inference phase. The sequential inference capability of DREP can enable some practical use cases
for the EOS problem. For example, sequential inference is useful when we might have different EOS data that
can be used as the support set at test time. Usually, when new ground truth data are available, we need to
re-train the DNN model, which is time-consuming. However, for the DREP structure, we do not need to
re-train the model but only need to include the new ground truth data in the support set that serves as
reference data to support prediction. This shows the generalization ability of the model from an ML
perspective. Moreover, the sequential update also enables the model to be effective when some regions of
density/temperature are not available during model training. To this end, we do not need to store the entire
dataset used for training. We can keep the learned representation and use it in future tasks. Since EOS
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problems may involve different computational physics models, this functionality can be very useful in
practice.

3.3. Challenging tasks for NN: uncertainty quantification and downstream tasks
NN uncertainty quantification.We use the common practice from [53] to connect the predicted variance of
NN to the model outputs, P and E. More specifically, we modify the loss function by including the variance
to each prediction and a regularization term that includes the variance itself:

Lvar =
1

N

N∑
i=1

1

2

(
||PNN − P||2

σ2
P

+ logσ2
P +

||ENN − E||2

σ2
E

+ logσ2
E

)
(5)

where P and E are equally balanced. However, as shown in the later section (figure 10), the results are usually
not meaningful as NN does not consider the relationship to the training data here.

3.3.1. DREP Uncertainty quantification results
When the training data is limited, it is desirable that the model remains uncertain on its predictions in
regions far away from the observed data samples. To this end, we introduce a novel variance regularization
term that aims to guide the model to be uncertain in regions with limited or no training data samples:

LKER =
1

NQ

NQ∑
n=1

1

σxqn
Dist

(
xqn ,Sn

)
xqn ∈ XQn (6)

where σxqn represents the predicted variance for the query input xqn , and Dist(xqn ,S) represents the distance
between the query point xqn , and the point in the support set Sn nearest to the query point xqn . To minimize
this loss, the variance should be high for (1) data points far away from the observed data, and (2) in regions
of missing data. DREP model enables us to introduce such novel regularization to accurately guide the
uncertainty. In the regions near to observed data, the distance will be low leading to overall low loss.

We train the model to maximize the conditional log-likelihood

LDREP =

NQ∑
n=1

− log
(
pDREP

(
yqn |Sn,xqn

))
=

NQ∑
n=1

− log
(
N
(
yqn |µqn ,σ

2
qn

))
(7)

where Sn is the support set of the training task Tn, yqn represents the query set output for query set input xqn ,
(xqn ,yqn) ∈Qn,N (.) represents the gaussian distribution, µqn represents the predicted mean, σ2

qn represents
the predicted variance, and pDREP represents the DREP model. In addition, we introduce the kernel-based
regularization term LKER (equation (6)). The overall loss of the model is given by

L= LDREP +λ1LKER (8)

where λ1 is the regularization coefficient that controls the impact of variance regularization on the overall
model training.

3.3.2. Prediction/thermodynamics consistency checking
Using the model designs and regularization methods from previous sections, we have established a
multi-output model that can fit the EOS data well despite the range and sparsity issues. However, DREP
simulates stochastic processes and still produces some variance when there are no nearby reference data
points. This would create some wiggles in the predicted P and E curves. Additionally, in the large-density
regions, the model predictions might have some larger absolute errors due to overfitting. To address this
issue, we can train multiple models with randomized initialization and meta-learning-style tasks. The
ensemble of these randomized models creates more reliable prediction results. Next, we also verify that by
improving the prediction stability of the model, we also improve the consistencywhen applied to
downstream tasks.

Thermodynamic consistency from gradient-based PDE measure. The proposed DREP model can fit the pressure
and internal energy well with limited training data. However, to safely utilize these prediction results, we
would need to verify them in terms of thermodynamic consistency. We know that both pressure and internal
energy can be derived from the Helmholtz free energy F. This can be combined with the fundamental
thermodynamic relation: dU=−SdT− PdV. Thus, we have

P=− ∂F

∂V
|T, E= F−T

∂F

∂T
|V. (9)

8
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where V is the volume. We perform partial differentiation of P and E, then using the chain rule we have:

∂P

∂T
=− ∂2F

∂T∂V
,

∂E

∂V
=

∂F

∂V
−T

∂2F

∂V∂T
=−P+T

∂P

∂T
(10)

P= T
∂P

∂T
− ∂E

∂V
(11)

with ∂V
∂ρ =− m

ρ2 , wherem is the mass corresponding to V, we get

PCONSISTENCY = P= T
∂P

∂T
+

ρ2

m

∂E

∂ρ
(12)

which we will use as the consistency criterion.
We propose to use the computed gradients from the DREP model to generate a PCONSISTENCY term and

compare it with the ground truth P or the DREP prediction Ppred if the ground truth is not available. If the
difference is small, we can conclude that the P and E predictions are consistent with each other. Together
with the accuracy of the actual E predictions, we can conclude that the model makes thermodynamically
consistent predictions.

4. Evaluation results

We first introduce the iFPEOS dataset and experiment details in section 4.1. We then present the quantitative
results that show the superiority of our proposed model over the baseline regression models in section 4.2. In
section 4.2, we compare the prediction results using averaged MRE results from training-validation-splits.
Afterward, we present the consistency and uncertainty quantification results of our proposed DREP model.
The final results are from the proposed model trained with all available training data. Finally, we carry out
multiple ablation studies to investigate the contribution of different components of the proposed model.

4.1. Dataset description
The iFPEOS dataset is visualized in figure 4. It consists of 1637 data points:D = {(ρi,Ti,Ei,Pi)}1637i=1 , where
1228 are observations from experiments that reflect samples from the true underlying function f such that
(E,P) = f(ρ,T), 63 are interpolated on the isochores 0.0196–0.0841 g cm−3 for temperature points
0.086–10.77 eV, and all remaining ones are extrapolations [54] from the observed data points. We consider
extrapolations at density 1× 10−5 g cm−3 and temperature 8.62× 10−6 eV as boundary data points.

As mentioned in section 3.2, to address the wide range and high sparsity of the given dataset, we apply
log transformations. The input scale is already presented in figure 4. We also visualize the outputs in figure 5.
We consider all the interpolations and extrapolations as part of the training data. From them, we randomly
select 80% for training:Dtr = {(ρi,Ti,Ei,Pi)}1391i=1 , and the rest for testing:Dts = {(ρi,Ti,Ei,Pi)}246i=1. We
repeat the random train-test split 5 times and present the average test set results across the 5 runs.

4.2. Prediction results and comparisons
In this section, we present experimental results that: (1) compare the prediction results of the proposed DREP
model with several commonly used baseline regression models; (2) verify thermodynamic consistency of the
ML-EOS predictions; and (3) demonstrate the stability and generalization abilities of the proposed model
from both ML and physics perspectives.

We use the mean relative error (MRE) as the main metric to show the overall performance, which is
defined as:

MRE=
1

N

N∑
n=1

|ŷn − yn|
|yn|

(13)

where the target response can be either P or E. We first summarize the overall MRE comparison in table 1. As
can be seen, the proposed DREP outperforms all the baseline models on both energy and pressure
predictions. We will demonstrate more detailed results including P/E−T curves at different density points
and show how the baseline models suffer from the main challenges as summarized earlier in the paper.

Prediction results of DREP. In this section, we present a detailed visualization of the EOS fitting results by the
DREP model. The overall objective of the model is to take density ρ and temperature T as inputs and make
predictions on pressure P and internal energy E as outputs. In the training stage, we make 80% of the entire
table available and iteratively generate tasks from it. Each task consists of 50 context points and 50 target
points. We consider the trained DREP model and analyze the model’s regression capability for different

9
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Figure 4. Dataset composition visualization.

Figure 5. Visualization of the dataset in the log scale .

Table 1. Comparison results.

Model Average MRE P (%) Average MRE E(%)

RR 397 492
RRpoly=13 7.11 6.00
KRR 5.84 5.95
GP 24.3 31.9
NN 1.11 1.19
DREP 0.90 1.03

density values using the pressure-temperature and energy-temperature Curves. For each density value, we
consider the temperature in the range of 8.6× 10−6 eV–22 060 eV, and plot the ground truth values along
with the energy and pressure predictions. In figure 6, each pressure-temperature curve is generated by
predicting on 1000 temperature values for each density value. For better visualizations, we use the log scale.
The original units for the quantities are: gcm−3 for density, eV for temperature,Mbar for pressure, and
eV/atom for internal energy. The temperature values are evenly distributed in the log space. The reference
points (ground truth data) from the original EOS table are shown as circles in the figure. The solid curves
represent density values that are included in the training data, while the dashed curves are predictions for
density values not present in the training dataset. It is worth to note the unseen density curves are also
smooth and show reasonable trends compared to the adjacent curves that include ground truth points.

We next visualize the predicted surface of energy and pressure for density in the range
1× 10−5gcm−3–1597gcm−3 and temperature in the range 8.6× 10−4 eV–22 060 eV. For the energy trend,
we shifted the DREP model prediction by ES = 16 eV/atom before the log transformation. Figure 7 visualizes
the two surfaces predicted by our DREP model. We also visualized the relative error distribution in
figure 11(a). The error is mostly evenly distributed over the density-temperature range in which the model is
trained in. The relative error can be higher when the ground truth value is small, which is expected.

Prediction results of baseline models. For a more thorough comparison, we present some detailed prediction
results from representative baseline models, including ridge regression (RR) and GP regression.

For the RR model, the overall MRE is around 444.5%. Apparently, a linear model can not capture the
complex (and highly nonlinear) relationship between the outputs and the inputs. One solution is to

10
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Figure 6. DREP prediction results (Es = 16 eV/atom, original units: T: eV, P: Mbar, E: eV/atom). The ground truth data points are
marked by circles. The solid curves represent density values that are included in the training data, while the dashed curves
represent unseen density values.

construct nonlinear polynomial features based on the inputs. To this end, we have tested polynomial orders
of 2,3,5,7,13,17, and the corresponding MRE results are: LMRE(Poly2) = 72.9%,LMRE(Poly3) =
60.4%,LMRE(Poly5) = 29.7%,LMRE(Poly7) = 16.3%,LMRE(Poly13) = 5.2%,LMRE(Poly17) = 205.5%. After a
polynomial order of 13, the model starts to severely overfit and the MRE quickly increases. The MRE results
with polynomial order of 13 look promising. However, by closely checking the pressure-temperature curves
of Poly13, it shows that the model is highly unstable between ground- truth data points. By using the kernel
approach instead of expanding to polynomial inputs, Kernel ridge regression (KRR) can further improve the
smoothness of the RR model, achieving an MRE at around 5%. However, as can be seen in figure 8, the
curves still have severe wiggles in many density regions. Particularly, the prediction struggles to stay true to
the reference data trend in the low temperature region. We can see from figure 5 too that the low temperature
region changes drastically from low density to high density, which could be the cause of the poor
performance from baseline models in this range. Finally, the GP model exhibits some large predictive
variances for regions where training data is completely missing. It is also worth noting that in table 1, we
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Figure 7. Predicted energy and pressure surface visualization. The color coding shows the overall increasing trend of P and E
predictions (log of indicated units) along with the increase of ρ and T.

show the overall MRE after omitting some highly nonphysical predictions (with relative errors being much
larger than 100%), and the results are still far from ideal.

Sequential inference experiments. The proposed model can integrate knowledge from different sizes of
support sets for downstream regression problems during the inference phase as a sequential inference model.
Here, we show how the model’s sequential inference capability can be useful in the EOS problem. If we use a
support set of size 0, the model reduces to a simple NN model. When we change the size of the support set,
we change the amount of information we force the model to consider during inference for prediction on the
test inputs.

We consider the DREP model trained for 1000 epochs with novel kernel-based regularization strength λ1

of 0.1. As shown in figure 9, when there is only one data point in the support set, the MRE’s for both P and E
are very high. As the support set size increases, the model has more knowledge about the true regression
function, and the model obtains a better estimate of the true underlying function which leads to improved
performance on downstream regression tasks.

4.3. Uncertainty quantification results
DREP introduces a kernel-based regularizer that enables the model to have accurate uncertainty
quantification capabilities, which will be investigated in this section.

NN uncertainty quantification results. First, we show the issue with the predicted variances of NN. In
figure 10, the variance is not very accurate in that it can not provide an interpretation of how the model is
performing outside of the training regime. The predicted variance of P is larger only in the low temperature
region, while the predicted variance of E is almost uniform across the entire data space. The desired behavior
of the predicted variance should indicate whether the model is certain about the predictions. Next, we show
that our proposed DREP structure enables us to use a novel regularizer to do exactly that.

Regularization and uncertainty quantification. The support set offers information that makes DREP different
from a standard NN. In supervised ML, when the target prediction region is very different from the labeled
data that we have seen during training, the prediction results are not as reliable as in-range predictions. The
model should be able to quantify such unreliability. In our framework, these cases can be captured by the
uncertainty through the predicted variance. To ensure that the model predicts a higher variance when the test
data point is far away from the available training data, we propose to add a kernel regularization term to the
loss function (section 3.3.1). In the EOS problem, we introduce the variance regularization loss during
training as:

LKER =

NQ∑
n=1

Dis
(
xqn ,Sn

)
×
(

1

σPn

+
1

σEn

)
(14)

where σPn and σEn represent the predicted pressure and energy for the query input xqn . We train the DREP
model on the 1228 iFPEOS dataset points directly observed from the experiments. After training for 1000
epochs, we plot the predicted variance for missing data regions and data regions far away from the
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Figure 8. Kernel ridge regression predictions: Pressure / Internal Energy—temperature curves for different densities
(Es = 16 eV/atom, original units: T: eV, P: Mbar, E: eV/atom). The ground truth data points are marked by circles. The solid
curves represent density values that are included in the training data, while the dashed curves represent unseen density values.

observations in figure 11. We consider the model’s prediction and consistency in the density range
0.0001 gcm−3–1597 gcm−3 and temperature range of 0.068 eV–22061 eV. As can be seen, the model outputs
high variance in regions of low density and temperature, which corresponds to the missing data region (see
figure 4), where no reference data is available for the model to learn from. Moreover, this high variance also
correlates to a high relative error region, a desirable property of an uncertainty-aware model.

Out-of-distribution detection experiments. In the above experiments, the input range is still close to the
training data.

We have shown that our model can generalize better than basic models in these cases. However, if the test
inputs are even further away from the known region, all the models are expected to make more unreliable
predictions. In this case, we would like the model to output a high uncertainty score that indicates a
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Figure 9. Trends of MRE vs. Number of data points in the support set. Number of points in the support data set is indicated by x
axis values. We can see the MRE decreases as we increase the size of the support set, which indicates that the support set data
points provide useful information that could help the model make accurate predictions.

Figure 10. Trends of NN predicted variance. The predicted variance for pressure does not match the training data distribution
and the predicted variance for internal energy is mostly non-informative.

Figure 11. Trends of relative error and variance of DREP with λ1 = 0.1.

potentially unreliable prediction. Our DREP model is designed with this objective and leads to desired
uncertainty behavior. Figure 12 shows the variance output of the DREP model for such out-of-distribution
regions, where the model variance increases as the model makes predictions on regions far away from the
training data.

14



Mach. Learn.: Sci. Technol. 5 (2024) 015031 D Yu et al

Figure 12. Predicted variance.

Figure 13. DREP prediction results with/without ensembles. The ground truth data points are marked by circles. The solid lines
represent density values that are included in the training data, while the dashed lines represent unseen density values. We can see
that the single model predictions (right figure) have wiggles in low-temperature regions. The average training MRE of the single
models is 0.89% for P and 1.11% for E, while the ensemble predictions on the training data has an MRE of 0.77% for P and 0.51%
for E.

4.4. Consistency analysis
We next carry out experiments to study the physical consistency of the DREP model. We first show the
results on using ensembling to improve the model consistency. We then examine the consistency in the
model predictions using automatic differentiation [55]. Finally, we plot the Hugoniot plot to further verify
the model consistency.

Consistency results with/without ensembling. Although the overall MRE is already low with DREP, we can still
observe few wiggles or oscillations in smaller-value regions (figure 13). To address this issue, we propose to
leverage the ensemble method by training multiple randomly initialized models with different random
meta-learning-style tasks. In figure 13, we compare the high-density-low-temperature predictions of a single
model and the ensemble model, which shows that the ensemble model improves the prediction consistency
to a large extent. This, together with the thermodynamic consistency in the following subsection, will greatly
benefit downstream tasks. We will use the Hugoniot as an example at the end of the section to demonstrate
the overall effectiveness.
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Figure 14. Trends of DREP model prediction and consistency-based computation of P. The relative difference in this density range
is 3.03%.

Figure 15. Relative difference between predictions PDREP and PCONSISTENCY.

Gradient-based consistency results. It is important that the EOS predictions are thermodynamically consistent.
To evaluate whether desired thermodynamic consistency can be achieved by the proposed model, we
compare the model’s pressure prediction (PDREP) with the pressure value (PCONSISTENCY) obtained by solving
the consistency criterion in equation (12). In figure 14, we show both PDREP and PCONSISTENCY for three
different density values at different temperatures. It can be seen that the PDREP curves match closely with the
PCONSISTENCY curves. In addition, the model prediction PDREP also matches the ground truth P points (GT
points) almost perfectly. It is also worth noting that no data points are available in training for a density of
13.00 g cm−3. The DREP model is still able to output physically reliable pressure values that are bounded
between the pressure curves of density 10.52 g cm−3 and 15.71 g cm−3. Moreover, it is well aligned with the
corresponding PCONSISTENCY curve as shown in figure 14.

Next, we show the difference (using MRE) between PDREP and PCONSISTENCY for the DREP model trained
over all the training data (including interpolated, and extrapolated data) in figure 15. The averaged overall
relative difference in the entire density temperature range is around 9%, and the distribution is almost
uniform except for the ρ∼ 0.1 gcm−3 region where the relative difference reaches a very high value of up to
600% (see figure 15(a)). It can be interesting future work to study this ρ∼ 0.1 gcm−3 region to better
understand the ML model’s inconsistent prediction around this region. In low-density-temperature regions,
the relative difference exceeds a threshold of 50% (see figure 15(b)). In all other regions, the model’s
predictions are mostly consistent, the relative difference is reasonably low, and the model is accurate.

Fitting the Hugoniot curves. Besides analyzing the predictions and PDE-induced consistency measures,
another important verification of the model consistency is to test it for downstream tasks.

The Hugoniot relations, which provide the thermodynamic conditions in shock-compressed matter, are
an important and convenient benchmark for the accuracy of EOS models. The Hugoniot equation relates the
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Figure 16. Hugoniot plots using predicted results from DREP with comparisons. We show that although a single model may
output a wiggly curve, the DREP ensemble can produce results very close to the most recent iFPEOS baseline.

Table 2.MRE results without log transformation.

MLmodel Average MRE P (%) Average MRE E (%)

RR 144 27.9
KRR 41.3 24.8
GP 92.3 85.0
NN 253 257

internal energy, pressure and density (E0,P0,ρ0) in the unshocked side of the shock front to those in the
shocked side (E,P,ρ):

E− E0 =
1

2
(P+ P0)

(
1

ρ0
− 1

ρ

)
, (15)

E0 and P0 have been obtained for the initial conditions corresponding to those in reported experimental
measurements (ρ0 = 0.173 g cm−3, T= 19K [4]) using the methodology presented in existing work [7].
The Hugoniot curves, corresponding to the pressure-compression points (P,ρ/ρ0) which satisfy
equation (15), are presented in figure 16, where we show curves generated by: (1) predicted table from a
single model; (2) predicted table from ensemble model, and compare the ensemble model results with
existing results [7, 12, 15]. As we can see, using a single model leads to a more wiggly curve that has sudden
slope changes compared to the ensemble model. If we compare with the most recent existing results [7], we
find that these wiggles can not be interpreted as reasonable physical behaviors. The ensemble model shows
smooth curves which are close to existing results. Thus, although the overall predictive performance (e.g.
using MRE as a metric) of a single model is close to the ensemble model, the latter shows an improved ability
to adapt to downstream tasks.

4.5. Ablation studies
We first investigate the impact of log transformation. We then study how the trade-off parameter λ1 and the
width L of neural network layers affect the model’s performance.

Prediction results without preprocessing. In table 2, we show the prediction results without log transformation.
As we can be seen, the model performance without log transformation is much worse than reported in
table 1. Specifically, the NN model suffers more than other models because it does not consider the similarity
between data points as in kernel-based methods. This shows that both the transformation and the model
design are important for a good prediction performance.
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Table 3. Impact of λ1.

λ1 Average MRE P (%) Average MRE E (%)

0 0.90 1.03
0.001 0.89 1.09
0.1 0.91 1.25
10 5.80 3.01

Table 4. Impact of layer width L.

L Average MRE P (%) Average MRE E(%)

32 3.49 4.34
64 2.56 2.63
128 1.61 2.41
512 0.98 1.35
1024 0.90 1.03
2048 1.02 1.32

Impact of regularization parameter λ1. The regularization parameter λ1 controls the contribution of the
kernel regularizer. We show the impact on the prediction results in table 3. As can be seen, stronger
regularization hurts the generalization performance. With a reasonable regularization value (e.g. 0.001–0.1),
the model has accurate uncertainty behavior, and reasonable prediction performance in terms of average
MRE of both P and E.

Impact of width L. The proposed DREP model consists of an encoder block and the aggregation module,
followed by the decoder block (see figure 3). The encoder and decoder blocks are neural networks with L
neurons in each layer. We evaluate models with different widths L. All the models are trained for 10000
epochs (each epoch consists of 2000 training tasks) and evaluated on the same test set. Table 4 shows the
results. For a model with low L values, it is likely to under-fit the training data. In contrast, for large L values,
the models tend to overfit to the training data. As can be seen from the table, the best result is achieved by a
model with L= 1024.

5. Conclusion

In this work, we conduct deep learning-based regression to jointly predict energy and pressure at an arbitrary
point, aiming to facilitate and accelerate the construction of universal equation-Of-State (EOS) models. We
introduce log transformations and meta-learning-inspired training that lead to an accurate,
thermodynamically consistent, and uncertainty-aware deep regression model. Experiments across multiple
baselines and settings demonstrate the effectiveness of the developed model. The designed training
mechanism proves to work well under wide-ranged and sparse data settings. The uniquely designed
kernel-based regularizer ensures accurate uncertainty quantification even with highly sparse training data.
The ensembling technique further improves the prediction consistency of the model, which is also
demonstrated in the improved thermodynamic consistency and downstream tasks.
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learning frameworks and libraries for large-scale data mining: a survey Artif. Intell. Rev. 52 77–124
[27] Sushma Reddy D and Rama Chandra Prasad P 2018 Prediction of vegetation dynamics using ndvi time series data and lstmModel.

Earth Syst. Environ. 4 409–19
[28] Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J and Carvalhais N 2019 Deep learning and process understanding for

data-driven earth system science Nature 566 195–204
[29] Kashefi A, Rempe D and Guibas L J 2021 A point-cloud deep learning framework for prediction of fluid flow fields on irregular

geometries Phys. Fluids 33 027104
[30] Raissi M, Perdikaris P and Karniadakis G E 2019 Physics-informed neural networks: a deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations J. Comput. Phys. 378 686–707
[31] Zhang D, Guo L and Em Karniadakis G 2020 Learning in modal space: solving time-dependent stochastic pdes using

physics-informed neural networks SIAM J. Sci. Comput. 42 A639–65
[32] Tartakovsky A M, Ortiz Marrero C, Perdikaris P, Tartakovsky G D and Barajas-Solano D 2020 Physics-informed deep neural

networks for learning parameters and constitutive relationships in subsurface flow problemsWater Resour. Res. 56 e2019WR026731
[33] Yang L, Zhang D and Em Karniadakis G 2020 Physics-informed generative adversarial networks for stochastic differential

equations SIAM J. Sci. Comput. 42 A292–317

19

https://orcid.org/0009-0002-2373-4907
https://orcid.org/0009-0002-2373-4907
https://orcid.org/0009-0006-1404-3716
https://orcid.org/0009-0006-1404-3716
https://orcid.org/0000-0002-8874-5503
https://orcid.org/0000-0002-8874-5503
https://orcid.org/0000-0003-3445-6797
https://orcid.org/0000-0003-3445-6797
https://orcid.org/0000-0003-2465-3818
https://orcid.org/0000-0003-2465-3818
https://orcid.org/0000-0002-0426-5407
https://orcid.org/0000-0002-0426-5407
https://doi.org/10.1038/s41567-021-01485-9
https://doi.org/10.1038/s41567-021-01485-9
https://doi.org/10.1063/1.5108667
https://doi.org/10.1063/1.5108667
https://doi.org/10.1103/PhysRevLett.121.025001
https://doi.org/10.1103/PhysRevLett.121.025001
https://doi.org/10.1103/PhysRevLett.122.255702
https://doi.org/10.1103/PhysRevLett.122.255702
https://doi.org/10.1038/s41586-020-2535-y
https://doi.org/10.1038/s41586-020-2535-y
https://doi.org/10.1016/j.hedp.2018.08.001
https://doi.org/10.1016/j.hedp.2018.08.001
https://doi.org/10.1103/PhysRevB.104.144104
https://doi.org/10.1103/PhysRevB.104.144104
https://doi.org/10.1103/PhysRevB.84.224109
https://doi.org/10.1103/PhysRevB.84.224109
https://doi.org/10.1063/1.4917477
https://doi.org/10.1063/1.4917477
https://doi.org/10.1103/PhysRevB.105.L081109
https://doi.org/10.1103/PhysRevB.105.L081109
https://doi.org/10.2172/917468
https://doi.org/10.1103/PhysRevE.93.043210
https://doi.org/10.1103/PhysRevE.93.043210
https://doi.org/10.1088/0067-0049/215/2/21
https://doi.org/10.1088/0067-0049/215/2/21
https://doi.org/10.1103/PhysRevB.83.094101
https://doi.org/10.1103/PhysRevB.83.094101
https://doi.org/10.1063/1.5053994
https://doi.org/10.1063/1.5053994
https://doi.org/10.1103/PhysRevLett.118.035501
https://doi.org/10.1103/PhysRevLett.118.035501
https://doi.org/10.1103/PhysRevB.103.134107
https://doi.org/10.1103/PhysRevB.103.134107
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://arxiv.org/abs/2207.00668
https://doi.org/10.1063/5.0126708
https://doi.org/10.1063/5.0126708
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s10462-018-09679-z
https://doi.org/10.1007/s10462-018-09679-z
https://doi.org/10.1007/s40808-018-0431-3
https://doi.org/10.1007/s40808-018-0431-3
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1063/5.0033376
https://doi.org/10.1063/5.0033376
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1137/19M1260141
https://doi.org/10.1137/19M1260141
https://doi.org/10.1029/2019WR026731
https://doi.org/10.1029/2019WR026731
https://doi.org/10.1137/18M1225409
https://doi.org/10.1137/18M1225409


Mach. Learn.: Sci. Technol. 5 (2024) 015031 D Yu et al

[34] Purja Pun G P, Batra R, Ramprasad R and Mishin Y 2019 Physically informed artificial neural networks for atomistic modeling of
materials Nat. Commun. 10 2339

[35] Zhu Y, Zabaras N, Koutsourelakis P-S and Perdikaris P 2019 Physics-constrained deep learning for high-dimensional surrogate
modeling and uncertainty quantification without labeled data J. Comput. Phys. 394 56–81

[36] Iten R, Metger T, Wilming H, Del Rio L and Renner R 2020 Discovering physical concepts with neural networks Phys. Rev. Lett.
124 010508

[37] Pfau D, Spencer J S, Matthews A G D G and Foulkes WM C 2020 Ab initio solution of the many-electron Schrödinger equation
with deep neural networks Phys. Rev. Res. 2 033429

[38] Geneva N and Zabaras N 2022 Transformers for modeling physical systems Neural Netw. 146 272–89
[39] Bronstein MM, Bruna J, LeCun Y, Szlam A and Vandergheynst P 2017 Geometric deep learning: going beyond euclidean data IEEE

Signal Process. Mag. 34 18–42
[40] Cohen T, Weiler M, Kicanaoglu B and Welling M 2019 Gauge equivariant convolutional networks and the icosahedral cnn Int.

Conference on Machine Learning (PMLR) pp 1321–30
[41] Lu L, Jin P, Pang G, Zhang Z and Em Karniadakis G 2021 Learning nonlinear operators via deeponet based on the universal

approximation theorem of operators Nat. Mach. Intell. 3 218–29
[42] Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A and Anandkumar A 2020 Fourier neural operator for

parametric partial differential equations (arXiv:2010.08895)
[43] Pang G, Yang L and Em Karniadakis G 2019 Neural-net-induced gaussian process regression for function approximation and pde

solution J. Comput. Phys. 384 270–88
[44] Reisert M and Burkhsrdt H 2007 Learning equivariant functions with matrix valued kernels J. Mach. Learn. Res. 8 385–408
[45] Wang S, Wang H and Perdikaris P 2021 On the eigenvector bias of fourier feature networks: from regression to solving multi-scale

pdes with physics-informed neural networks Comput. Methods Appl. Mech. Eng. 384 113938
[46] Raissi M, Perdikaris P and Em Karniadakis G 2018 Numerical gaussian processes for time-dependent and nonlinear partial

differential equations SIAM J. Sci. Comput. 40 A172–98
[47] Raissi M, Perdikaris P and Em Karniadakis G 2017 Machine learning of linear differential equations using gaussian processes J.

Comput. Phys. 348 683–93
[48] Lagaris I E, Likas A and Fotiadis D I 1998 Artificial neural networks for solving ordinary and partial differential equations IEEE

Trans. Neural Netw. 9 987–1000
[49] Bishop C M and Nasrabadi N M 2006 Pattern Recognition and Machine Learning vol 4 (Springer)
[50] Aggarwal C C et al 2018 Neural Networks and Deep Learning vol 10 (Springer) p 3
[51] Dietterich T 1995 Overfitting and undercomputing in machine learning ACM Comput. Surv. (CSUR) 27 326–7
[52] Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov R and Smola A 2017 Deep sets (arXiv:1703.06114)
[53] Kendall A and Gal Y 2017 What uncertainties do we need in bayesian deep learning for computer vision? Advances in Neural

Information Processing Systems p 30
[54] Zhang S et al 2022 First-principles equation of state of chon resin for inertial confinement fusion applications Phys. Rev. E

106 045207
[55] Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L and Lerer A 2017 In NIPS Workshop

Automatic differentiation in pytorch

20

https://doi.org/10.1038/s41467-019-10343-5
https://doi.org/10.1038/s41467-019-10343-5
https://doi.org/10.1016/j.jcp.2019.05.024
https://doi.org/10.1016/j.jcp.2019.05.024
https://doi.org/10.1103/PhysRevLett.124.010508
https://doi.org/10.1103/PhysRevLett.124.010508
https://doi.org/10.1103/PhysRevResearch.2.033429
https://doi.org/10.1103/PhysRevResearch.2.033429
https://doi.org/10.1016/j.neunet.2021.11.022
https://doi.org/10.1016/j.neunet.2021.11.022
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
https://arxiv.org/abs/2010.08895
https://doi.org/10.1016/j.jcp.2019.01.045
https://doi.org/10.1016/j.jcp.2019.01.045
https://doi.org/10.5555/1248659.1248674
https://doi.org/10.5555/1248659.1248674
https://doi.org/10.1016/j.cma.2021.113938
https://doi.org/10.1016/j.cma.2021.113938
https://doi.org/10.1137/17M1120762
https://doi.org/10.1137/17M1120762
https://doi.org/10.1016/j.jcp.2017.07.050
https://doi.org/10.1016/j.jcp.2017.07.050
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/72.712178
https://doi.org/10.1145/212094.212114
https://doi.org/10.1145/212094.212114
https://arxiv.org/abs/1703.06114
https://doi.org/10.5555/3295222.3295309
https://doi.org/10.1103/PhysRevE.106.045207
https://doi.org/10.1103/PhysRevE.106.045207

	Deep energy-pressure regression for a thermodynamically consistent EOS model
	1. Introduction
	2. Related work
	3. Methodology
	3.1. Preliminaries
	3.2. Deep regression to jointly predict energy and pressure
	3.2.1. A task-based meta-learning style training process
	3.2.2. Sequential inference and fast adaptation to new training data

	3.3. Challenging tasks for NN: uncertainty quantification and downstream tasks
	3.3.1. DREP Uncertainty quantification results
	3.3.2. Prediction/thermodynamics consistency checking


	4. Evaluation results
	4.1. Dataset description
	4.2. Prediction results and comparisons
	4.3. Uncertainty quantification results
	4.4. Consistency analysis
	4.5. Ablation studies

	5. Conclusion
	References


