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ABSTRACT
Ab initio molecular dynamics (AIMD) simulations have become an important tool used in the construction of equations of state (EOS) tables
for warm dense matter. Due to computational costs, only a limited number of system state conditions can be simulated, and the remaining EOS
surface must be interpolated for use in radiation-hydrodynamic simulations of experiments. In this work, we develop a thermodynamically
consistent EOS model that utilizes a physics-informed machine learning approach to implicitly learn the underlying Helmholtz free-energy
from AIMD generated energies and pressures. The model, referred to as PIML-EOS, was trained and tested on warm dense polystyrene
producing a fit within a 1% relative error for both energy and pressure and is shown to satisfy both the Maxwell and Gibbs–Duhem relations.
In addition, we provide a path toward obtaining thermodynamic quantities, such as the total entropy and chemical potential (containing both
ionic and electronic contributions), which are not available from current AIMD simulations.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0192447

I. INTRODUCTION

The development of reliable equations of state (EOS) is funda-
mental to furthering the understanding of material properties. This
is particularly true for warm dense matter (WDM) systems, which
have both a solid-state density and a thermal energy comparable to
the Fermi energy. In this regime, accurate and fully consistent EOS
are required for the closure of the fluid equations governing hydro-
dynamic simulations, which are utilized to investigate spherical
target implosions in inertial confinement fusion (ICF) research1–8

and in some cases used to determine the full thermodynamic state
of experimentally measured systems.9,10 Beyond ICF research, EOS
also play a key role in planetary science: reliable EOS tables are

utilized in studies of planetary evolution and collisions,11 as well as
to provide insights into intraplanetary dynamics.12–14

A standard approach to constructing EOS is often a semiem-
pirical one where a first-principles-based EOS with adjustable free
parameters is fit to experimental measurements.15–21 However, in
the WDM regime, experimentally producing target temperatures
and densities is a challenging task. In most cases, the sampling of
the EOS surface is often limited to a few points primarily confined
to the principle Hugoniot,9,10,22–25 leaving portions of a material’s
EOS experimentally unexplored. Furthermore, the underlying form
of a first-principles-based EOS may have limited ability to accu-
rately describe the WDM system. Such is the case in QEOS26

and SESAME,19 where the Thomas–Fermi model,27 known for its
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inability to bind molecules, is often used to describe the electronic
contribution to the constructed EOS. When these two EOS are
compared to results based on the state-of-the-art density functional
theory (DFT) treatment of the electrons, significant differences can
be observed in the predicted Hugoniot and in the resulting simulated
implosions.4–8

An alternative approach to constructing EOS tables is to utilize
ab initio molecular dynamics (AIMD) simulations.4–8,28,29 Although
this approach has been made possible by the increase in computing
power over the past few decades, on-the-fly calculations of
a material’s EOS in the WDM regime are still prohibitively
costly. Therefore, an EOS is often calculated at a few hundred
temperature and density conditions, at most,28 to produce a grid of
EOS values across the domain of temperature and density of inter-
est. The intermediate values of the EOS surface are then obtained
by applying an interpolation scheme to the calculated points. A
key factor in the reliability of this approach is ensuring that the
interpolation scheme provides thermodynamically consistent
energies and pressures, which is often overlooked.

One of the earliest interpolation schemes with built-in ther-
modynamic consistency was the bi-quintic scheme put forth by
Swesty30 in which the Helmholtz free-energy of a system was directly
interpolated. The challenge of utilizing such an interpolation scheme
for EOS data generated by AIMD simulations is that the total
Helmholtz free-energies are unavailable (this is also the case for the
total entropies and chemical potentials). This issue was later circum-
vented by Dilts31 where thermodynamic constraints were directly
enforced in a tuned regression estimator method that utilized a
set of monomials to simultaneously interpolate the available energy
and pressure data. In recent years, the underpinnings of Swesty
and Dilts studies have lived on in the context of machine learn-
ing (ML) based schemes where neural networks32–38 or Gaussian
process regressions39,40 have been trained to learn EOSs. In the
work of Gaffney et al.,39 the use of AIMD training data in the
direct modeling of the Helmholtz free-energy produced excellent
interpolations for the energy and pressure of warm dense B4C.
However, not all thermodynamic relations were confirmed to hold
(e.g., Gibbs–Duhem relation), nor was it clear if any information

is missing from the implicitly learned Helmholtz free-energies. In
addition, many of the other current ML-based EOS models have
been primarily applied to cases where synthetic data can be easily
obtained and where most, if not all, EOS quantities are available.
Such models may not be suitable for use with AIMD training data
due to the missing thermodynamic quantities.

In the present work, we aim to address the above concern
by constructing a physics-informed ML-based EOS, referred to as
PIML-EOS, that utilizes only available energy, pressure, tempera-
ture, and density data from AIMD simulations. A thorough check
of the level of thermodynamic consistency of the model will be
provided. In addition, we will demonstrate a potential path toward
obtaining thermodynamic quantities that are currently unavailable
from the direct output of AIMD simulations. The rest of this
paper is outlined as follows: Sec. II provides details about the
reference dataset and data scaling. Section III defines the
criteria for thermodynamic consistency. Section IV provides details
on the construction of the model. In addition, Sec. V con-
tains the results and discussion before this work is concluded in
Sec. VI.

II. REFERENCE DATA
A. Dataset

Having a reliable EOS for warm dense polystyrene (CH) is
of importance due to its utilization as an ablator material in ICF
implosions.7,29 As polystyrene has been extensively studied, EOS
data are readily available. Here, the data from Zhang et al.29 for
polystyrene with equal parts carbon and hydrogen will be used as a
test of the proof of principle of the PIML-EOS model constructed in
Sec. IV. Shown in Fig. 1(a) are the temperature and density points
comprising the reference dataset. For simplicity, the original set
of conditions has been truncated to form a rectangular domain of
reference data where the densities vary between 2.1 and 12.6 g/cm3.
The temperature range was not affected by this truncation, and
the full range from 6.7 × 103 to 1.3 × 108 K is considered.
The corresponding target internal energies range from −103 to
1.5 × 105 eV/CH, and the pressures range from 44 to 9.4 × 106 GPa.

FIG. 1. Prediction errors for the energy (a) and pressure (b). Filled circles, pluses, and x’s represent the points in the training, validation, and test sets, respectively. The color
bar is with respect to the relative error, in %, for each quantity. Note that, for temperature and density, the conversion back to dimensional variables has been made.
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TABLE I. Definition and scaling relation for all thermodynamic quantities.

Quantity Symbol Scaling

Density ρ 1
ρ0

Temperature T kB
E0

Energy (internal) E 1
N0E0

Helmholtz free energy F 1
N0Eo

Entropy S 1
N0kB

Pressure P m
ρ0E0

Chemical potential μ 1
E0

At temperatures below 106 K, the reference data were obtained
with AIMD simulations driven by Kohn–Sham DFT. Above 106 K,
path integral Monte Carlo (PIMC) based AIMD simulations were
utilized. The DFT based energies were then shifted to match within
21.8 eV/CH at 106 K (this will be referred to as the matching
boundary). For additional details about the calculation of the
reference data, see Ref. 29.

B. Scaling relations
Before constructing the PIML-EOS model, all thermodynamic

quantities are made dimensionless. To achieve this, a value of E0 and
ρ0 must be set to scale the energy and density, respectively. These
values can be chosen independently but should be representative of
the values found in the reference dataset. For the polystyrene dataset
described above, E0 and ρ0 were chosen to be 100 eV and 2.1 g/cm3,
respectively. In addition, with the use of Boltzmann’s constant, kB,
and the mass of a CH pair, m, all remaining thermodynamic quanti-
ties can be made dimensionless. Furthermore, all extrinsic variables
are transformed to intrinsic variables with a scaling by N0, the
number of CH pairs in the system. Due to the 1:1 ratio of C to
H, this choice enables the system to be treated as a single compo-
nent system. For further details on the scaling relations, see Table I.
Moving forward, all thermodynamic quantities and equations
should be assumed to be dimensionless and describe intrinsic
quantities unless stated otherwise.

III. THERMODYNAMIC CONSISTENCY
For an interpolation scheme to be thermodynamically con-

sistent, the predicted energies and pressures must be in accor-
dance with the definitions for the associated thermodynamic
potential.30,31,41 In addition, both Maxwell’s relation30,31,35,39,41 and
the Gibbs–Duhem relation41 must be satisfied. The latter has not
been thoroughly explored in the context of ML interpolation
schemes. The predicted pressures and entropies of the interpo-
lation scheme should also be non-negative, and in the context
of a single phase, the corresponding stability conditions for the
thermodynamic potential must be met.30,31,35,41

A. Definitions
Given that the polystyrene reference dataset contains temper-

atures, T, and densities, ρ (two independent variables), the natural

thermodynamic potential to work in is that of the Helmholtz
free-energy, F(T, ρ). From the Helmholtz free-energy, the energy,
E, and pressure, P, are defined as

E = F + TS = F − T
∂F
∂T

(1)

and

P = ρ2 ∂F
∂ρ

, (2)

where S is the entropy.

B. Maxwell’s relation
In terms of the Helmholtz free-energy, Maxwell’s relation is

a statement about the commutativity of the partial derivatives of
temperature and density,30,41

∂2F
∂T∂ρ

=
∂2F
∂ρ∂T

. (3)

Using Eqs. (1) and (2), Maxwell’s relation of Eq. (3) can be
rewritten in terms of energy and pressure,

P = T
∂P
∂T
+ ρ2 ∂E

∂ρ
. (4)

Satisfaction of Maxwell’s relation ensures that there is at least
one Helmholtz free-energy surface capable of providing the given
energies and pressures. The work of Ref. 30 showed that, in the con-
text of hydrodynamic simulations, a failure to ensure this level of
consistency can lead to an effective error accumulation causing a
divergence from the expected result with a consistent EOS.

C. Gibbs–Duhem relation
Due to the homogeneous first order property of the Helmholtz

free-energy, the quantities P, T, and chemical potential μ are not
independent of one another.41 The relation between these quantities
is referred to as the Gibbs–Duhem relation, which states

dμ = −SdT +
1
ρ

dP. (5)

Any interpolation scheme capable of providing chemical
potentials must do so in a way that the gradients of the chemical
potential are consistent with the entropy and density.

D. Stability conditions
As the temperature–density conditions of polystyrene dataset

cover only a single phase, the extremum principle (maximum
entropy and minimum energy) must apply. In accordance, the
Helmholtz free-energy must then be concave in temperature and
convex in density,30,31,35,41

∂2F
∂T2 ≤ 0, ρ2 ∂

∂ρ
(ρ2 ∂F

∂ρ
) ≥ 0. (6)
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In terms of energy and pressure, the stability requirements of Eq. (6)
become

∂E
∂T
≥ 0

∂P
∂ρ
≥ 0. (7)

If the energies and pressures provided by an interpolation
scheme for a single phase away from critical points do not satisfy
the conditions of Eq. (7), then they are not physically achievable by
the system.

IV. MODEL CONSTRUCTION
A. Transformation of the Helmholtz free-energy

Directly modeling the Helmholtz free-energy and utilizing
Eqs. (1) and (2) has the advantage of ensuring that Maxwell’s
relation is satisfied by construction. This approach has been shown
to be successful in recent ML-based EOS models35,36,39 and will be
the approach taken here. It is important to note that, while the
Helmholtz free-energies are not available in the polystyrene dataset,
it will be shown that the energies and pressures can be used to
implicitly learn the Helmholtz free-energy. Furthermore, with the
wide range of energies, pressures, and temperatures encountered in
the polystyrene dataset, it would be advantageous to work within a
log representation of the Helmholtz free-energy. To accomplish this,
an auxiliary function f is introduced, which will be related to the
Helmholtz free-energy through an arcsinh transformation,

f = arcsinh(F) = ln(F +
√

F2
+ 1). (8)

The use of arcsinh over a standard natural log eliminates the need
for an arbitrary energy shift, preventing any issues from arising due
to a negative Helmholtz free-energy (without explicit values of F, an
arbitrary energy shift cannot guarantee positive values of F under all
conditions).

For an input quantity X, the corresponding derivative of the
Helmholtz free-energy transforms as

X
∂F
∂X
= cosh ( f )

∂ f
∂ ln (X)

. (9)

Utilizing Eq. (9), the equations for the energy and pressure become

E = F − T
∂F
∂T
= sinh ( f ) − cosh ( f )

∂ f
∂τ

(10)

and

P = ρ2 ∂F
∂ρ
= ρ cosh ( f )

∂ f
∂σ

. (11)

Here, the quantities τ and σ are defined as τ = ln(T) and σ = ln (ρ),
respectively. They are to be considered as the input variables of f
moving forward.

Eliminating the common factor of cosh( f) in Eqs. (10) and
(11) leads to the following partial differential equation (PDE) that
describes the auxiliary function f :

∂ f
∂τ
+ ρ

E − sinh ( f )
P

∂ f
∂σ
= 0. (12)

If the energy and pressure are known as a function of temperature
and density, Eq. (12) can be solved to determine f and corre-
spondingly the Helmholtz free-energy of the system (similar method
of solving PDE for unknown exchange–correlation free-energy by
direct fitting of a suitable analytical form was used in Ref. 42). As
energy and pressure data are available at select temperatures and
densities, these data can be used in conjunction with Eq. (12) dur-
ing the training process to produce a physics-informed ML model,
which is capable of implicitly learning the Helmholtz free-energies
as will be shown in Sec. IV B.

B. Introducing ML
To utilize the transformed Helmholtz free-energy, the auxil-

iary quantity f will be modeled with an artificial neural network
(ANN).43 That is, the ANN will take the quantities x⃗ T

= (τ, σ) as
an input and output a single value for the auxiliary function f . In
this work, a fully connected feedforward ANN with a single hidden
layer is utilized. Mathematically, f can be written as

f ANN
=W(2)g(W(1)x⃗ + β⃗). (13)

Here, the matrices W(1), W(2) and the bias vector β⃗ contain free para-
meters that will be optimized during the training process. The func-
tion g is the activation function, which was set to tanh throughout
this work.

The parameters of the ANN are optimized by minimizing the following cost function:

C =
1

2∑i γi

Ns

∑
i

γi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝

∂ f ANN
(τ, σ)

∂τ
+ ρref

i
Eref

i − sinh ( f ANN
(τ, σ))

Pref
i

∂ f ANN
(τ, σ)

∂σ
⎞

⎠

2RRRRRRRRRRRRRτi ,σi

+λ1
⎛

⎝
1 −

EANN
i

Eref
i

⎞

⎠

2

+ λ2
⎛

⎝
1 −

PANN
i

Pref
i

⎞

⎠

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (14)
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The first term of the cost function is based on the PDE of Eq. (12).
Here, the PDE is being evaluated at each training point, indexed
by i, with the reference energy, pressure, temperature, and density
replacing the corresponding value. The gradients of the ANN needed
in the first term of the cost function are calculated analytically,

∂ f ANN

∂x⃗
=

⎛
⎜
⎜
⎜
⎝

∂ f ANN

∂τ
∂ f ANN

∂σ

⎞
⎟
⎟
⎟
⎠

=W(1)T

W(2)T

○ g′(W(1)x⃗ + β⃗). (15)

The symbol ○ denotes a Hadamard product, which, in our notation,
is given higher priority than standard matrix multiplication in the
order of operations. In effect, by minimizing the first term of the cost
function, the model aims to find the solution to Eq. (12). The second
and third terms of the cost function, which contain the hyperparam-
eters λ1 and λ2, respectively, are added to ensure that when the cost
is minimized, a trivial solution ( f equal to a constant) of Eq. (12) is
not found. Furthermore, γi is a stochastic quantity assigned to each
member of the training set and can take on values of either 0 (proba-
bility 10%) or 1 (probability 90%). On each training epoch, the value
of γi for every training sample point is redrawn. This provides a level
of stochasticity to the gradient descent to enable the model to work
its way out of potential local minimum on the cost surface.

In principle, additional terms can be added to the cost function
of Eq. (14) to enforce the remaining thermodynamic constraints. In
practice, however, this may lead to additional difficulties training the
model. For instance, attempts were made to add a regularization
term that penalized functions in the hypothesis set (set of func-
tions represented by the architecture of the ANN) with negative
entropy. This additional regularization often led to stability issues
in the training process, which can be attributed to such a term
eliminating potential pathways in the domain of free parameters that
the ANN can take during training. In effect, for ease of training, it
may be better to allow the ANN to pass through physically unac-
ceptable functions for f on its way to the final thermodynamically
consistent form.

C. Training the model
In total, the reference dataset is comprised of 198

temperature–density points where AIMD simulations were
performed. Of these 198 points, 15 were randomly chosen and set
aside for the test set. An additional 15 points were randomly chosen
for the validation set, which was used to monitor the training
process to prevent overfitting. The remaining 168 points were then
used as the training set. The temperature–density conditions chosen
for each dataset can be seen in Fig. 1(a), where each of the test,
validation, and training points are indicated by an x, a plus symbol,
and a filled circle, respectively. Attempts to utilize a smaller fraction
of the reference data demonstrated that the training size could
be cut to 90 data points and provide satisfactory results; see the
supplementary material. Below, only results for the largest training
set utilizing a single-fold cross-validation are discussed. Additional
results with a fivefold cross-validation are comparable and can also
be found in the supplementary material.

The number of nodes in the hidden layer of the ANN was set
to 80, a value chosen to provide the ANN with reasonable flexibility

while not exceeding a 2:1 ratio of free parameters to available train-
ing data. The free parameters were then optimized by performing a
stochastic gradient descent44 on the cost function of Eq. (14). During
this procedure, the gradients needed to update the weights were cal-
culated analytically (supplementary material). The hyperparameters
λ1 and λ2 were both determined to be a value of 0.3. Tests of these
hyperparameters indicated that, if the value was below 0.1, a trivial
solution to Eq. (12) was often found. Values above 1.0 would pro-
duce a model that fits the training data well but may have unphysical
oscillations in the energies and pressures along the reference iso-
chores. Furthermore, with a learning rate of 0.003, the training run
consisted of 25 × 106 epochs. Attempts to use a larger learning rate
to shorten the training run often affected the stability of the stochas-
tic gradient descent. The learning curves along with an analysis of
the gradients during the backpropagation stage can be found in the
supplementary material.

The code for the training of the PIML-EOS model was writ-
ten from scratch in Python version 3.6. NumPy45 was utilized for
all matrix operations as well as for its built-in hyperbolic trig func-
tions. The mpi4pi library46–49 was utilized to parallelize the training
process. The Python code for the PIML-EOS can be found at
https://github.com/jhinz2/PIML-EOS.

V. RESULTS AND DISCUSSION
A. Training results

The resulting relative errors in the predicted energies and pres-
sures are shown in Figs. 1(a) and 1(b), respectively. These values
have been tabulated and are presented in Table II. As can be seen,
for both the energy and pressure, 75% of the predictions are within
1% of the target value across all three datasets. In the case of energy,
there were two points in the test set and nine points in the train-
ing set with a relative error above 5%, and no points exceed a 25%
error. Interestingly, all eleven of these points are clustered around
the 106 K boundary, where the energies of the KS and PIMC AIMD
simulations were matched, Fig. 1(a). As there is both a higher uncer-
tainty in the target energies and a likely discontinuity in the slope
of the energies at the matching boundary, the struggles of the model
here can be attributed to an underlying thermodynamic inconsis-
tency in the reference data related to thermal exchange–correlation
(XC) effects taken into account by the PIMC approach and missed
by DFT simulations with employment of a ground-state XC func-
tional (see Ref. 50). In the case of pressure, a similar result can be
seen, Fig. 1(b). While none of the predicted pressures exceeded a
5% error, the largest errors again occur at the matching boundary.
However, unlike the energies, predicted pressures along the bound-
ary of the domain of the reference dataset also experience some of
the larger errors.

To examine the interpolations of the PIML-EOS model, the
energies and pressures were calculated at 900 temperature points
(evenly spaced on the log scale) along each reference isochore. The
results for energy are shown in Fig. 2(a), and those for pressure are
shown in Fig. 2(b). Overall, the predictions of the PIML-EOS model
appear smooth with no sharp jumps or oscillations. Even near the
106 K matching boundary where the prediction errors are largest,
the model is able to make a smooth transition from the DFT data to
the PIMC data (more on this below). In the case of the 4.72 g/cm3
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TABLE II. Distribution of relative errors, in %, for the predicted energies and pressures of the PIML-EOS model on the training, validation, and test sets. Here, the 25th, 50th,
and 75th percentiles of each distribution, measured from the left tail, are provided. Rows 1 and 2 are the model’s predictions compared to the available AIMD data. Rows 3 and
4 are comparisons of the model’s predictions to ideal gas (IG) values for temperatures above 3 × 107 K. For clarity, the percentiles should be interpreted as the fraction of each
distribution, which has an error below the given value. For example, 75% of the test predictions on AIMD data have an error less than 0.992%.

Training Validation Test

Min 25th 50th 75th Max Min 25th 50th 75th Max Min 25th 50th 75th Max

Energy 0.001 0.057 0.282 0.834 19.499 0.005 0.025 0.491 0.995 3.036 0.002 0.038 0.168 0.992 25.475
Pressure 0.001 0.289 0.553 0.910 4.948 0.020 0.402 0.570 0.848 1.744 0.015 0.362 0.587 0.974 3.122

IG energy 10−4 0.594 1.042 1.500 1.800
IG pressure 10−5 0.188 0.430 0.646 1.178

isochore, only high temperature data were available to the model.
At lower temperatures, the PIML-EOS model produces the remain-
der of the energies and pressures in a way that is consistent with the
behavior of the neighboring reference isochores.

The smoothness of the interpolations is further confirmed by
examining the derivatives of the PIML-EOS model. For both energy
and pressure, the derivative with respect to temperature at each of
the 900 points along the reference isochores is calculated analytically

FIG. 2. (a) Interpolated energies and (b) interpolated pressures with the PIML-EOS model along the reference isochores. The solid lines indicate the model’s predictions,
while the circles indicate the reference data points. Note that the energies have been shifted for plotting purposes. The energies of 2.1 g/cm3 isochore have been shifted by
1100 eV/CH, and each subsequent isochore has been shifted by an additional 100 eV/CH. (c) and (d) Provide the derivative of the energy and pressure with respect
to temperature, respectively, from the model along each of the reference isochores. The black dotted line indicates the expected value for an ideal gas. Note that, for
temperature, density, energy, and pressure, the conversion back to dimensional variables has been made. Derivatives have been intentionally left dimensionless to provide
insights into the number of degrees of freedom in the system.
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(supplementary material). From Figs. 2(c) and 2(d), it is clear
that both the derivative of energy and the derivative of pressure
with respect to temperature are continuous everywhere and appear
to be smooth themselves. Around 106 K, there does not appear
to be any discontinuities or significant jumps associated with the
inconsistency of the slopes of the DFT and PIMC data. However, at
present, it is not possible with the available data to confirm whether
the accuracy of predicted quantities such as specific heats in this
region is significantly affected. Regardless, the smoothing of the
discontinuity in the slope of the reference data can be advantageous
for hydrodynamic simulations as discontinuities in the EOS can
cause numerical difficulties.30 Furthermore, boundary effects at the
high and low temperature regimes appear to be more prevalent in
the model’s derivatives than the predicted energies and pressures.

While the initial results of the model are promising, due to
the limited availability of reference data, it is important to provide
further quantification of the generalization error. This validation
can be carried out in the high temperature regime, T > 3 × 107 K,
as the ground truth EOS from the MD simulations converges with
that of an ideal gas (IG). To form this second test set, 120 000 IG
energies and pressures are generated at temperatures between
3 × 107 and 108 K (evenly spaced on a log scale) and across the full
range of densities considered. The PIML-EOS model trained only
on the AIMD data is then applied to make corresponding predic-
tions at each of these points. The resulting error distributions are
provided in Table II. As can be seen, in the case of pressure, the
predictions are consistently within 1% of the IG values and never
exceed an error of 1.2%. The errors in energy are slightly worse as
the median error is just over 1% and the maximum error sits at
1.8%. This higher error observed in the energies can be attributed
to small oscillations that appear along isotherms in this temperature
regime. These oscillations suggest that a function that is constant in
density, as the ground truth EOS is in this regime, may be just
outside of the hypothesis set formed by the ANN (analogous to
expanding a constant function in a finite number of sines and
cosines). Overall, based on this result, the results of the original test
set and the observed behavior of the interpolations, it is expected that
the general error of the model across the full domain of temperatures
and densities considered will be around 1% for both the energy and
pressure.

B. Consistency checks
To evaluate Maxwell’s relation, the energy, pressure, and

the corresponding derivatives from the PIML-EOS model were

calculated at 90 000 temperature and density points (evenly space
on log scale) across the same domain of temperature and density
consistent with the reference dataset. The residual error, defined as
the absolute value of the difference between both sides of Eq. (4),
was calculated at each point, and the resulting distribution is pre-
sented in Table III. As can be seen, the errors in Maxwell’s relation
are at or near machine precision, confirming that Maxwell’s relation
holds.

To determine if the non-negativity condition on the pressure
and the conditions of stability are satisfied, the maximum between
0 and the negative of the predicted target quantity of interest was
evaluated at each of the 90 000 points used above in the test of the
Maxwell relation. The resulting distributions, as shown in Table III,
indicate that there are no points where the pressure becomes neg-
ative and that the stability conditions of Eq. (7) hold across the
domain of temperatures and densities consistent with the reference
dataset. However, as a note of caution, care must be taken when
the predictions of the PIML-EOS model are extrapolated beyond the
domain containing the reference data. As can be seen in Fig. 2(c), at
temperatures below 5 × 103 K, the stability condition for the energy
begins to break down.

Next, for the evaluation of the Gibbs–Duhem relation, the
chemical potential from the PIML-EOS model was obtained using
the following Euler equation:

μ = F +
1
ρ

P. (16)

Equation (16) comes from a manipulation of Eq. (1), where the Euler
relation E = ST + μ − P/ρ has been utilized. As the chemical poten-
tial is needed as a function of pressure and not density, Eq. (5), a
transformation of the input variables is performed. This is done by
fitting a tangent plane to the chemical potential surface at each of
the 90 000 temperature–density points. For each fit, both the tem-
perature and density were varied by ±0.05% to generate 25 points
around (T0, ρ0), the conditions where the Gibbs–Duhem relation
is being evaluated. Using a least squares fit to the model predic-
tions at these 25 conditions, the coefficients a1 and a2 in the tangent
plane,

μ − μ0 = a1(T − T0) + a2(P − P0), (17)

were optimized. Here, (P0, μ0) are the predicted values of the pres-
sure and chemical potential at (T0, ρ0). The coefficients associated

TABLE III. Distributions for various checks on the thermodynamic consistency of the PIML-EOS model. Column 1 indicates
the quantity calculated at each of the 90 000 points sampled across the domain of T and ρ consistent with the reference
data. For Maxwell’s relation, this is the absolute value of the difference between the two sides of Eq. (4). Column 2 gives the
minimum of each distribution; columns 3 through 5 indicate the 25th, 50th, and 75th percentiles of the distribution, respectively;
and column 6 provides the maximum of the distribution.

Distribution Min 25th 50th 75th Max

Maxwell relation 0.0 0.0 2.22 × 10−16 7.11 × 10−15 2.73 × 10−12

max (0,−P) 0.0 0.0 0.0 0.0 0.0
max (0,− ∂E

∂T ) 0.0 0.0 0.0 0.0 0.0
max (0,−∂P

∂ρ ) 0.0 0.0 0.0 0.0 0.0
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with these fits are directly related to the derivatives of the chemical
potential and can be interpreted as

a1 =
∂μ
∂T

, a2 =
∂μ
∂P

. (18)

Comparing Eqs. (5) and (18), the coefficients a1 and a2 should
be equal to the negative of the entropy and the reciprocal of the den-
sity, respectively. Here, the entropy is calculated from the Helmholtz
free-energy and the comparison with the coefficient a1 is made
in Fig. 3(a). Overall, the relative error in a1 is consistently below
1% across most of the domain associated with the reference data.
Near the matching boundary, 106 K, there are some instances where
this error can reach 10% or more. In total, these high error points
constitute only 300 of the 90 000 points sampled. Furthermore, the
coefficient a2 is compared with the reciprocal of the density in
Fig. 3(b). Again, the error in the coefficient is consistently below
1% for most conditions sampled with the exception of a few points
near the matching boundary. For both coefficients, the high error
points seem to be the most sensitive to the window used to fit the
tangent plane. With a more accurate scheme to calculate the deriva-
tives of the chemical potential, these larger errors may be reduced.
Overall, these results demonstrate that the Gibbs–Duhem relation

holds for the PIML-EOS model but may be susceptible to a
breakdown in regions where thermodynamic inconsistencies exist
in the reference data.

The remaining consistency check is to examine the sign of
the model’s predicted entropy. As with the pressure and stability
conditions, the maximum of 0 and the negative of the entropy
is calculated at each of the 90 000 points sampled. The resulting
color map of values is shown in Fig. 4(a). Below 20 000 K for most
densities considered, the entropy becomes negative, which is the first
observed thermodynamic inconsistency in the PIML-EOS model’s
predictions not related to an inconsistency in the reference data.

This inconsistency in the entropy can be explained by the fact
that the use of E(T, ρ) and P(T, ρ) does not provide the same
information as F(T, ρ) about a system’s EOS. This means that the
true Helmholtz free-energy of polystyrene differs by some unknown
function of temperature and density from the Helmholtz free-energy
of the model,

Fsys
= FANN

+ h(T, ρ). (19)

The form of the function h can be determined by the fact that both
the pressure and energy used in the construction of the model are

FIG. 3. (a) and (b) Indicate the error in the calculated gradients ∂μ/∂T and ∂μ/∂P, respectively, needed in the evaluation of the Gibbs–Duhem relation. The color bar is
based on the log of the relative error in %. The black circles are the reference data. (c) and (d) Provide the error on the gradients ∂E/∂S and ∂E/∂ρ, respectively, when
the model is transformed to the energy representation E(S, ρ). Note that, for temperature, density, and pressure, the conversion back to dimensional variables has been
made.
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FIG. 4. (a) Evaluation of the sign of the predicted entropy across the domain of
thermodynamic conditions consistent with the reference data, which are indicated
by the black circles. (b) Distribution of ΔF/T for the comparison with an ideal gas.
The red dotted line indicates the values of S0 needed to completely determine the
total Helmholtz free-energy of the system. (c) Corrected entropy along each of the
reference isochores.

total quantities containing all contributions, both electronic and
ionic, within the context of the approximations made in the AIMD
simulations. As such, the function h is constrained by P sys

= P ANN

and E sys
= E ANN.

Plugging Eq. (19) into Eq. (2) and enforcing the constraint on
pressure, it can be seen that the function h will be independent
of density, h(ρ, T)→ h(T). In a similar manner, Eq. (19) can be

inserted into Eq. (1) and the constraint on the energy can be applied.
This results in the following ordinary differential equation that
describes h:

h(T) − T
dh(T)

dT
= 0. (20)

Solving Eq. (20) leads to h being a linear function of temperature.
Therefore, during the training process, the PIML-EOS model picks
out one Helmholtz free-energy surface in a family of possible sur-
faces with the resulting true Helmholtz free-energy of the system
being

Fsys
= FANN

− S0T. (21)

The unknown constant S0 can be determined with an exact calcu-
lation of the system’s entropy at a single temperature–density point
or in the limit where the Helmholtz free-energy goes to a known
form. It is important to note that the presence of this unknown con-
stant does not affect the previous consistency checks as the constant
will either cancel out or be eliminated by a derivative. It is also of
note that any model that learns the Helmholtz free-energy from only
energy and pressure data will be missing this linear contribution of
temperature.

To determine the constant So for the polystyrene dataset, the
convergence to an IG in the high temperature regime (see Fig. 2)
is utilized. Here, Fsys in Eq. (21) is replaced with the exact expres-
sion for an IG, FIG,41 and the difference ΔF = FIG

− FANN is taken at
each of the 90 000 conditions previously sampled. From the distri-
bution of ΔF/T, Fig. 4(b), all points with a temperature greater than
3 × 107 K were averaged, producing a value of 22.24 for S0. The
corresponding standard deviation associated with this average is
0.04, confirming that ΔF/T does, in fact, go to a constant at high
temperatures. When S0 is added to the predicted entropies from the
PIML-EOS model, the thermodynamic inconsistency is resolved as
shown in Fig. 4(c). With the calculation of S0, the total Helmholtz
free-energy is now completely determined, enabling the prediction
of quantities such as the total entropy and total chemical potential of
the system under all temperature–density conditions. As these quan-
tities are not directly obtainable from AIMD simulations, this makes
the PIML-EOS model a valuable tool for the construction of a more
complete EOS table and may help facilitate a better understanding
of material properties.

C. Additional validation
With the consistency checks complete, two additional tests of

the model are performed. For the first test, the PIML-EOS model
was used to calculate the principle Hugoniot, which describes the
locus of possible final states, (E2, P2, ρ2), a system can achieve after
being shock compressed from an initial state (E1, P1, ρ1). This locus
of final states is determined by the Rankine–Hugoniot equation,

E2 − E1 +
1
2
(P2 + P1)(

1
ρ2
−

1
ρ1
) = 0. (22)

For the calculation of the polystyrene Hugoniot, the same initial
conditions used by Zhang et al.29 are used here. In dimensionless
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FIG. 5. Calculated Hugoniot for the PIML-EOS model, green curve. A comparison
is made to the result predicted by Zhang et al.,29 red curve, which was obtained
with a cubic spline interpolation of the reference dataset.

quantities, these values are E1 = −10.4281, P1 = 0, and ρ1 = 0.5. The
resulting Hugoniot, Fig. 5, is in overall good agreement with that
produced by Zhang et al. with a cubic spline interpolation. The
maximum compression of both curves is within 0.5% of one another.
In the high-pressure regime, oscillations in the PIML-EOS predicted
Hugoniot of ±2% about the Zhang et al. curve can be observed. This
can be attributed to the Hugoniot’s sensitivity to errors in the fitted
EOS and not the presence of apparent shell structure as retraining
the model often resulted in a differing behavior of the oscillations.
The use of an ensemble approach has been shown to eliminate such
oscillations38 and was attempted in the supplementary material. It
was found that the behavior of the Hugoniot, particularly in the
low-pressure regime, is highly sensitive to errors in the model.
Therefore, caution must be taken when interpreting the Hugoniot
through a physics lens.

For the second additional test, a transformation to the energy
representation, E(S, ρ), is performed. As was done in the test of
the Gibbs–Duhem relation, the transformation of the input vari-
ables is done by fitting a tangent plane under each of the 90 000
temperature–density conditions previously used in the consistency
checks. The coefficients of the fits are then compared to the
expected values of the derivatives ∂E/∂S = T and ∂E/∂ρ = −P/ρ.
From Figs. 3(c) and 3(d), it can be seen that the derivatives are
reproduced well within a 1% error. Together with the tests of
the Gibbs–Duhem relations, this demonstrates that the PIML-EOS
model can be trained in one thermodynamic potential and utilized
in another.

VI. CONCLUSION
In summary, a physics-informed machine learning EOS model

was constructed such that energy and pressure data can be utilized
to implicitly learn the Helmholtz free-energy up to an unknown
constant. With the use of a known limit, the unknown constant can
be determined, allowing for previously unobtainable quantities such
as the total Helmholtz free-energy, entropy, and chemical potential
to be calculated for AIMD based EOS tables. Trained on reference
data for warm dense polystyrene, the PIML-EOS model was capable
of reproducing the target energies and pressures within a 1% error.

The model was also shown to be thermodynamically consistent,
providing thermodynamically stable predictions that satisfied both
the Maxwell and the Gibbs–Duhem relations. Furthermore, we
found that the model appears to be capable of identifying incon-
sistencies in the reference dataset. While this is not the intended
purpose of the model, this sensitivity may be a valuable tool to
improve existing discrete EOS tables. Moving forward, additional
tests are needed to determine how the model will handle more
complex systems that experience a phase transition in the consid-
ered domain of temperature and density. At present, it appears
that such transitions will likely be smoothed out, which could be
advantageous for hydrodynamic simulations, but for other applica-
tions where smoothing is undesirable, further developments of the
model are likely needed. Furthermore, additional validation should
be performed, when possible, to ensure that the level of error on the
energies and pressures is maintained for quantities such as specific
heats.

SUPPLEMENTARY MATERIAL

The supplementary material contains technical details about
the implementation of the PIML-EOS model. This includes details
about how gradients of the model are calculated for both the back-
propagation and analysis of the smoothness of energies and pres-
sures. In addition, learning curves from the training runs can be
found here.

ACKNOWLEDGMENTS
J.H., V.V.K., D.I.M., and S.X.H. were supported by the Depart-

ment of Energy National Nuclear Security Administration under
Award No. DE-NA0003856, the University of Rochester, the New
York State Energy Research and Development Authority, and U.S.
National Science Foundation PHY Grant No. 2205521. Partial fund-
ing for S.X.H. was provided by the NSF Physics Frontier Center
Award No. PHY-2020249. All computations were performed on the
Laboratory for Laser Energetics HPC systems.

This report was prepared as an account of work sponsored by
an agency of the U.S. Government. Neither the U.S. Government nor
any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the U.S. Govern-
ment or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the U.S.
Government or any agency thereof.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

APL Mach. Learn. 2, 026116 (2024); doi: 10.1063/5.0192447 2, 026116-10

© Author(s) 2024

 18 N
ovem

ber 2024 18:18:09

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

Author Contributions

J. Hinz: Conceptualization (equal); Methodology (lead); Software
(lead); Writing – original draft (lead); Writing – review & editing
(equal). Dayou Yu: Conceptualization (equal); Methodology (sup-
porting); Writing – review & editing (supporting). Deep Shankar
Pandey: Conceptualization (equal); Methodology (supporting);
Writing – review & editing (supporting). Hitesh Sapkota: Con-
ceptualization (supporting); Methodology (supporting). Qi Yu:
Conceptualization (lead); Methodology (equal); Supervision (equal);
Writing – review & editing (equal). D. I. Mihaylov: Conceptual-
ization (equal); Methodology (equal); Writing – review & editing
(supporting). V. V. Karasiev: Conceptualization (lead); Method-
ology (equal); Supervision (lead); Writing – review & editing
(equal). S. X. Hu: Conceptualization (lead); Methodology (equal);
Supervision (lead); Writing – review & editing (equal).

DATA AVAILABILITY
The data that support the findings of this study are openly

available in the database constructed in Ref. 28 under the table
C18H18_EOS_09-18-20.txt.

REFERENCES
1Y. Komatsu, T. Sasaki, T. Kikuchi, N. Harada, and H. Nagatomo, “Changes of
implosion dynamics derived by difference of equation of state,” EPJ Web Conf.
59, 04010 (2013).
2S. Faik, A. Tauschwitz, and I. Iosilevskiy, “The equation of state package
FEOS for high energy density matter,” Comput. Phys. Commun. 227, 117–125
(2018).
3M. Zeman, M. Holec, and P. Váchal, “HerEOS: A framework for consistent
treatment of the equation of state in ALE hydrodynamics,” Comput. Math. Appl.
78, 483–503 (2019).
4S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, “First-principles
equation-of-state table of deuterium for inertial confinement fusion applications,”
Phys. Rev. B 84, 224109 (2011).
5M. A. Morales, L. X. Benedict, D. S. Clark, E. Schwegler, I. Tamblyn, S. A. Bonev,
A. A. Correa, and S. W. Haan, “Ab initio calculations of the equation of state
of hydrogen in a regime relevant for inertial fusion applications,” High Energy
Density Phys. 8, 5–12 (2012).
6S. X. Hu, R. Gao, Y. Ding, L. A. Collins, and J. D. Kress, “First-principles
equation-of-state table of silicon and its effects on high-energy-density plasma
simulations,” Phys. Rev. E 95, 043210 (2017).
7S. X. Hu, L. A. Collins, V. N. Goncharov, J. D. Kress, R. L. McCrory, and
S. Skupsky, “First-principles equation of state of polystyrene and its effect on
inertial confinement fusion implosions,” Phys. Rev. E 92, 043104 (2015).
8Y. H. Ding and S. X. Hu, “First-principles equation-of-state table of beryl-
lium based on density-functional theory calculations,” Phys. Plasmas 24, 062702
(2017).
9P. M. Celliers, M. Millot, S. Brygoo, R. S. McWilliams, D. E. Fratanduono,
J. R. Rygg, A. F. Goncharov, P. Loubeyre, J. H. Eggert, J. L. Peterson et al.,
“Insulator–metal transition in dense fluid deuterium,” Science 361, 677–682
(2018).
10M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane,
M. E. Savage, D. E. Bliss, T. R. Mattsson, and R. Redmer, “Direct observation of
an abrupt insulator-to-metal transition in dense liquid deuterium,” Science 348,
1455–1460 (2015).
11Y. Shimoni, O. Aharonson, and R. Rufu, “The influence of equation of state on
impact dynamics between Pluto-like bodies,” Icarus 371, 114677 (2022).
12R. Püstow, N. Nettelmann, W. Lorenzen, and R. Redmer, “H/He demixing and
the cooling behavior of Saturn,” Icarus 267, 323–333 (2016).

13N. Nettelmann, A. Becker, B. Holst, and R. Redmer, “Jupiter models with
improved ab initio hydrogen equation of state (H-REOS.2),” Astrophys. J. 750,
52 (2012).
14N. Nettelmann, R. Püstow, and R. Redmer, “Saturn layered structure and
homogeneous evolution models with different EOSs,” Icarus 225, 548–557
(2013).
15Ø. Wilhelmsen, A. Aasen, G. Skaugen, P. Aursand, A. Austegard, E. Aursand,
M. A. Gjennestad, H. Lund, G. Linga, and M. Hammer, “Thermodynamic mod-
eling with equations of state: Present challenges with established methods,” Ind.
Eng. Chem. Res. 56, 3503–3515 (2017).
16O. Kunz and W. Wagner, “The GERG-2008 wide-range equation of state for
natural gases and other mixtures: An expansion of GERG-2004,” J. Chem. Eng.
Data 57, 3032–3091 (2012).
17J. Gernert, A. Jager, and R. Span, “Calculation of phase equilibria for multi-
component mixtures using highly accurate Helmholtz energy equations of state,”
Fluid Phase Equilib. 375, 209–218 (2014).
18N. Kukreja, P. Ghoderao, V. H. Dalvi, and M. Narayan, “Cubic equation of state
as a quartic in disguise,” Fluid Phase Equilib. 531, 112908 (2021).
19S. P. Lyon and J. D. Johnson, “SESAME: The Los Alamos National Labora-
tory equation of state database,” Tech. Rep. LA-UR-92-3407, Los Alamos National
Laboratory, Los Alamos, NM, USA, 1992.
20K. A. Velizhanin and J. D. Coe, “Automated fitting of a semi-empirical
multiphase equation of state for carbon,” AIP Conf. Proc. 2272, 070051 (2020).
21Y. Le Guennec, R. Privat, S. Lasala, and J. N. Jaubert, “On the imperative need
to use a consistent α-function for the prediction of pure-compound supercritical
properties with a cubic equation of state,” Fluid Phase Equilib. 445, 45–53 (2017).
22M. A. Barrios, T. R. Boehly, D. G. Hicks, D. E. Fratanduono, J. H. Eggert, G.
W. Collins, and D. D. Meyerhofer, “Precision equation-of-state measurements on
National Ignition Facility ablator materials from 1 to 12 Mbar using laser-driven
shock waves,” J. Appl. Phys. 111, 093515 (2012).
23J. Li, Q. Wu, J. Li, T. Xue, Y. Tan, X. Zhou, Y. Zhang, Z. Xiong, Z. Gao,
and T. Sekine, “Shock melting curve of iron: A consensus on the temperature
at the Earth’s inner core boundary,” Geophys. Res. Lett. 47, e2020GL087758,
https://doi.org/10.1029/2020gl087758 (2020).
24L. E. Crandall, J. R. Rygg, D. K. Spaulding, T. R. Boehly, S. Brygoo, P. M. Celliers,
J. H. Eggert, D. E. Fratanduono, B. J. Henderson, M. F. Huff et al., “Equation of
state of CO2 shock compressed to 1 TPa,” Phys. Rev. Lett. 125, 165701 (2020).
25H. Shu, Y. Zhang, B. Wang, W. Yang, H. Dong, T. Tobase, J. Ye, X. Huang, S.
Fu, Q. Zhou, and T. Sekine, “Laser-shocked calcium difluoride (CaF2) as a warm
dense matter,” Phys. Plasmas 27, 030701 (2020).
26R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, “A new quo-
tidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31, 3059–3078
(1988).
27R. P. Feynman, N. Metropolis, and E. Teller, “Equations of state of elements
based on the generalized Fermi-Thomas theory,” Phys. Rev. 75, 1561 (1949).
28B. Militzer, F. Gonzalez-Cataldo, S. Zhang, K. P. Driver, and F. Soubiran, “First-
principles equation of state database for warm dense matter computation,” Phys.
Rev. E 103, 013203 (2021).
29S. Zhang, K. P. Driver, F. Soubiran, and B. Militzer, “First-principles equation
of state and shock compression predictions of warm dense hydrocarbons,” Phys.
Rev. E 96, 013204 (2017).
30F. D. Swesty, “Thermodynamically consistent interpolation for equation of state
tables,” J. Comput. Phys. 127, 118–127 (1996).
31G. A. Dilts, “Consistent thermodynamic derivative estimates for tabular
equations of state,” Phys. Rev. E 73, 066704 (2006).
32A. Carranza-Abaid, H. F. Svendsen, and J. P. Jakobsen, “Thermodynamically
consistent vapor-liquid equilibrium modelling with artificial neural networks,”
Fluid Phase Equilib. 564, 113597 (2023).
33K. L. Mentzer and J. L. Peterson, “Neural network surrogate models for
equations of state,” Phys. Plasmas 30, 032704 (2023).
34R. G. Patel, I. Manickam, N. A. Trask, M. A. Wood, M. Lee, I. Tomas, and
E. C. Cyr, “Thermodynamically consistent physics-informed neural networks for
hyperbolic systems,” J. Comput. Phys. 449, 110754 (2022).
35D. Rosenberger, K. Barros, T. C. Germann, and N. Lubbers, “Machine learning
of consistent thermodynamic models using automatic differentiation,” Phys. Rev.
E 105, 045301 (2022).

APL Mach. Learn. 2, 026116 (2024); doi: 10.1063/5.0192447 2, 026116-11

© Author(s) 2024

 18 N
ovem

ber 2024 18:18:09

https://pubs.aip.org/aip/aml
https://doi.org/10.1051/epjconf/20135904010
https://doi.org/10.1016/j.cpc.2018.01.008
https://doi.org/10.1016/j.camwa.2018.10.014
https://doi.org/10.1103/physrevb.84.224109
https://doi.org/10.1016/j.hedp.2011.09.002
https://doi.org/10.1016/j.hedp.2011.09.002
https://doi.org/10.1103/physreve.95.043210
https://doi.org/10.1103/physreve.92.043104
https://doi.org/10.1063/1.4984780
https://doi.org/10.1126/science.aat0970
https://doi.org/10.1126/science.aaa7471
https://doi.org/10.1016/j.icarus.2021.114677
https://doi.org/10.1016/j.icarus.2015.12.009
https://doi.org/10.1088/0004-637x/750/1/52
https://doi.org/10.1016/j.icarus.2013.04.018
https://doi.org/10.1021/acs.iecr.7b00317
https://doi.org/10.1021/acs.iecr.7b00317
https://doi.org/10.1021/je300655b
https://doi.org/10.1021/je300655b
https://doi.org/10.1016/j.fluid.2014.05.012
https://doi.org/10.1016/j.fluid.2020.112908
https://doi.org/10.1063/12.0000798
https://doi.org/10.1016/j.fluid.2017.04.015
https://doi.org/10.1063/1.4712050
https://doi.org/10.1029/2020gl087758
https://doi.org/10.1103/physrevlett.125.165701
https://doi.org/10.1063/1.5135596
https://doi.org/10.1063/1.866963
https://doi.org/10.2172/4417654
https://doi.org/10.1103/physreve.103.013203
https://doi.org/10.1103/physreve.103.013203
https://doi.org/10.1103/physreve.96.013204
https://doi.org/10.1103/physreve.96.013204
https://doi.org/10.1006/jcph.1996.0162
https://doi.org/10.1103/physreve.73.066704
https://doi.org/10.1016/j.fluid.2022.113597
https://doi.org/10.1063/5.0126708
https://doi.org/10.1016/j.jcp.2021.110754
https://doi.org/10.1103/physreve.105.045301
https://doi.org/10.1103/physreve.105.045301


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

36G. Chaparro and E. A. Muller, “Development of thermodynamically consistent
machine-learning equations of state: Application to the Mie fluid,” J. Chem. Phys.
158, 184505 (2023).
37G. Truc, N. Rahmanian, and M. Pishnamazi, “Assessment of cubic equations of
state: Machine learning for rich carbon-dioxide systems,” Sustainability 13, 2527
(2021).
38D. Yu et al., “Deep energy-pressure regression for a thermodynamically
consistent EOS model,” Mach. Learn.: Sci. Technol. 5, 015031 (2024).
39J. A. Gaffney, L. Yang, and S. Ali, “Constraining model uncertainty in
plasma equation-of-state models with a physics-constrained Gaussian process,”
arXiv:2207.00668 (2022).
40K. Zhu and E. A. Muller, “Generating a machine-learned equation of state for
fluid properties,” J. Phys. Chem. B 124, 8628–8639 (2020).
41H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd ed.
(Wiley, 1985), pp. 37, 60, 146, 155, 182, 208, 373.
42V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey, “Accurate homogeneous
electron gas exchange-correlation free energy for local spin-density calculations,”
Phys. Rev. Lett. 112, 076403 (2014).

43W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” Bull. Math. Biophys. 5, 115–133 (1943).
44J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a
regression function,” Ann. Math. Stat. 23, 462–466 (1952).
45C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith et al., “Array programming
with NumPy,” Nature 585, 357 (2020).
46L. Dalcín, R. Paz, and M. Storti, “MPI for Python,” J. Parallel Distrib. Comput.
65, 1108 (2005).
47L. Dalcín, R. Paz, M. Storti, and J. D’Elía, “MPI for Python: Performance
improvements and MPI-2 extensions,” J. Parallel Distrib. Comput. 68, 655 (2008).
48L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel distributed
computing using Python,” Adv. Water Resour. 34, 1124 (2011).
49L. Dalcin and Y. L. L. Fang, “mpi4py: Status update after 12 years of
development,” Comput. Sci. Eng. 23, 47 (2021).
50V. V. Karasiev, D. I. Mihaylov, and S. X. Hu, “Meta-GGA exchange-correlation
free energy density functional to increase the accuracy of warm dense matter
simulations,” Phys. Rev. B 105, L081109 (2022).

APL Mach. Learn. 2, 026116 (2024); doi: 10.1063/5.0192447 2, 026116-12

© Author(s) 2024

 18 N
ovem

ber 2024 18:18:09

https://pubs.aip.org/aip/aml
https://doi.org/10.1063/5.0146634
https://doi.org/10.3390/su13052527
https://doi.org/10.1088/2632-2153/ad2626
https://arxiv.org/abs/2207.00668
https://doi.org/10.1021/acs.jpcb.0c05806
https://doi.org/10.1103/physrevlett.112.076403
https://doi.org/10.1007/bf02478259
https://doi.org/10.1214/aoms/1177729392
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.jpdc.2005.03.010
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1109/mcse.2021.3083216
https://doi.org/10.1103/physrevb.105.l081109

